
= questions/confusion
Java

,
Maven

,
Git

What are the 1 steps to >1. compile the source
code into bytecode

running Javarode ?
-> I. Execute the resulting bytecode
-> This is Java's method of packaging & distributing code

(which is a crucial part of software development)
What are interpreted

->

languages that have a built-in zode/program that reads
, parses

,
and

languages? interprets your written code for execution
-

-> This allows the same source code to run on diff platforms & processors ...
& howev

,

it is slower

-> Ex : Python , Javascript
What are compiled languages ? -> there is a compiler that parses & translates suc code into machine

executable code

· "Compiler" is not a universal structure for use across different

machines--the compiling must be done for the specific
2 A (instruction set architecture) used by the machine

-> compiled languages run faster
,

but a machine-specific version

& needs to be created for each machine

-> "lower-level" ; speaks directly to the computer rather than to

an interpreter ... this is why its faster .

-> ↳ : C
,
G ++, Rust

What was Java's big idea ? - to take the best of both worlds by compiling source code to the

"machine code" of a virtual machine

~ this is where JVM (Java Virtual Machines comes in

-> they also provide machine specific implantations of the virtual machine

-> Pro : write (node) once
,

run everywhere
->

Con : some performance loss

S what is "compiling" ? - The process of translating a program from source code into a

language that a machine can more easily understand.
-> the code that you Java binary bytecode ,

write (English/
Development

->
readable by computer :

human readable):
-> kit (5DK) HelloWorld class

Hello Work . java

-> The JDK includes a Java compiler that converts your Java Source code

into bytecode ,
which is formatted in a :class' file.

->

bytecode wouldn't make sense to us : its like "CHFEOO 112315" type stuff.

What does "executing" mean> The process of feeding a compiled (bytecodes program into a

for a Java program ? machine that can follow the instructions
.

· How is it done ? -> the JVM reads the bytecode & executes it
·

source code is not even needed to execute the program since it has

been converted/duplicated as a bytecode file.

-> Since the bytecode is not specific to any machine
,

it can be read

and executed on any computer !

-

Compiling & Executing Large Projects -

What do large projects usually have ? O Hundreds ofjava source files to compile
② External dependencies that must be imported

What is a dependency ? -> A "31 party library containing code that you didn't
write yourself but is used in your project

S

-> Examples that we will use : JavaFX
,

JUnit

"class" files archived into one.

How is a large project compiled? -> all of the source code files and the dependency files get passed through
the JDK for compilation into bytecode.

How is it executed ? -> all dependencies & compiled bytecode are passed through the JVM for

execution

-> all compiled . class Files AND all dependentjar files must be presentI ->

they are usually in
a jar file format

,
which is just a bunch of

at runtime.
·

Luckily ,
all of these files can be packaged together into a

single
, distributablejaw file

So what does the final byte code * Packaged
2 from source

executable program look like ? code- Program
-> Jum

-> C . jar File)

Dependencies "HelloWorld
.jar"

D

-> all files packaged into 1
.jar File

->

source code does NOT have to be stored/included in this jar file,

since we already have the corresponding byte code.

-
How do you compile source O O

code from the command line ? O this line tells the computer to compile a Java
program.

(like in the terminal) & . Listing dependencies to use when compiling (they are listed by their location on your computer
·

multiple dependencies are separated with semicolons &

· dependencies can bejar or . Zip Files
,
or paths/directories containing class orjava files.

③ · Listing all of thejava suc files to be compiled into class files

· multiple files separated with spaces &

·

must all be java
① ③ ⑰

How do you execute code (byteda] O
from the command line? ① This line tells the computer to execute a Java program.

& . List of bytecode files to include in execution (listed by their location on your computer)
·

multiple bytecode locations are separated with semicolons &

· can bejaw or Zip Files
,
or paths/directories containing class files

③ · Full name of the class to be executed

· the command line arguments
- Packages

,
and Imports -

What are java packages ? -> anamespace' that organizes a set of related classes& interfaces.I
· the specified class must define a "main()" function

-

Inuptly,aninkoffakages as being similar to differa

so what are they for ?
-> for organizing class files into different "Units"

·Can put related class files in theAme package ,
&

unrelated ones in diff packages
-> classes exist in packages
-> packages are basically an organizational unit
-> NOT the same as concept of "packaging" code into a jar File

.

-> packages' names imply hierarchy ; don't just name them randomly
.

How do you put a class in -> put a line like this at the top of the class File :

a certain package ? package com .compl ..101.ex0]
What does each part of the name-

>
Each part of the package name is a subfolder within the package

mean ?
->

class files are placed into the bottom-most folder associated with their

package name

-> Packages are associated with a particular folder path on disk ; the

package name is essentially a file path.

Breakdown of this package HelloWorld
. java (source code

name ? package com .compl ..101.ex0]
-> the class is in the "ex01" folder

,

which is in the "lea01" Folder
,

which

is in the "comp302" folder which is in the "com" folder.

-> HOWEVER
, the each indiv folders are NOT packagesthemselves· There's only

↓ package ,
which is the entire line

-> several files can share a common prefix folder path laka package
name) :

=

-

diff packages,

Always diff
folders

- does every File always have its own unique package ?
How do you reference -> call a package of a different file by writing out its

across packages ? name o the name of the file assoc
. W) that package ,

o the

method (in that files that you are wanting to use :

Hello World
. Java

package com .compl ..101.ex0]
public class HelloWorld

public static void main (String(Jargs] &

com . comp301 .

12201
. ex02

.

Hello World 2 - say Hello <) ;
33 & calling theFile "HelloWorld 1 . java"

via its package name.

-> referencing is inefficient because its a super long line to typef you

Whatis an easier way to reference have to type it EVERY SINGLE TIME you want to use a method from

packages ? another suc code file
.

->

Imports ! Import statement only needs to goone at the top of the

current File... then you can call methods from the referenced file whenever

you want :

Hello World
. Java

the⑭page com .come

&import com . Comp30l .

/eco1
.
ex02

. HelloWorld 2 ;

public class HelloWorld E
- -g 33

- The Java Build P rocess
-

What is the "build process" ? -> In software engineering ,

it is the act of converting a project's
source material (source code

, image files
,
raw data

,

etc.) into a

Shippable software product.
↳ meaning that the output is packaged up& ready to be sent to the customer.

-> essentially , the steps you take to clean up & get a program ready for publishing

to language

What are common build process & clean : delete leftover temporary files from the project folder

ects ? ② compile : source code -> bytecode

③ test : Run the unit tests for the project

⑧ package : pack the compiled code into a distributable format

tasks for Java proj I
-> Build process tasks vary from project to project and from language

⑤ verify : check that the packaged output meets quality criteria

⑥ site : Generate documentation for the produced code-notes or other documents
you might

⑦ deploy : Send the packaged output to customers

make
.

What are "build automation tool" ? -> Softwares or programs or systems used to make all the steps of "building" easier.

-> Different
programming languages use different BATS

-> Popular BATs for Java : what we
will use

- in COMP 301
· Anl · Gradle ·Maven

Definitions of Maren terminology? ->

pom.M1 : the Main project configuration file

-> specifies various settings for the project
-> typically placed in the root of the project folder

.

-> written in XML
,
which is a generalized form of heml .

-> Dependency : external module or library that
your project uses.

-> Archetype : A template for creating new Maven projects.

-> Artifact : the packaged outputFile(s) produced by the project .

-> Lifecycle : A configurable build process task ; All of the tasks that Maven

is automating.
The "build tasks" "

What is the idea bekind Maven? -> To go with reasonable
,

conventional defaults unless you tell it to do

otherwise.

· What is the point of branches ?

Example of a Maven project
directory ?

source code

->)
. java Files]

test code

- C
. java files)

D-all
compiled

Stuff compiled out put

-> C
.

class Files)

u > configuration file

- all the dependencies

-> All COMP301 assignments will follow this structure

Example of a Maven configuration
(pom . xm1) file ?

> Project version & artifact info

Project name

, Javaversionand other properta

- < Dependencies

I
these line

Lifecycle configuration
the project is depende us tha Junit library & that we nee

version y of that library .

-> knowing m to write all of this stuff isn't that important ; maren does

it for you.

How do
you add dependencies to

-> all you have to do is copy
& paste the "Maven dependency snippet" (that many

public Jara libraries usually provide) into
your pom . xm1 File.

your project ? -> When you add them
, Maren will matically download the correct ·jar file

link it during compilation/execution-
I

- The Git version control system-

What is "version control" ? - The practice of tracking changes made to a codebase

version
->

i

. e
., periodically capturing "snapshots" of the code

,
and archiving all

control system

a ↑ snapshots in case you need to refer back to them

Why is having a VCS -> all software comparties have a version control system in place .

important? -> Especially useful when there are multiple developers working on

one source code.

-> Useful for when you need to back track your work.

What is Git ? -> the most well-known& widely used VCS

What is a commit ? -> A "snapshot" of the files in a codebase at a point in time.

-> Basically every time
you make a new commit ,

a version of your code

is saved .
Kind of like looking at version history" on Google does.

How are commits stored ? -> When one is created
,
it is given a unique identifier generated based on

the content of the files stored inside

· The identifier is similar to a Hash Value (for ex .,

"

F222993"

- identifierisusedreferent
-> You choose when you want to make a new commit... whenever you have

made enough changes & want to save them

Where are commits stored ? -> everywhere ; both locally & in Github
.

If someone clones your project, they will

get all of your commits too .

What is a repository? -> A "storage unit" for tracking& storing commits related to a project
-> A

#mote repository is stored on Github ,
and a local one on your

computer.

What is a branch ? -> A morable label that points to a particular commit .

branch ?

I
created

-

Commit ~ commit commit

-> Every time a new commit is made
,

the current branch is moved forward to

point to the newest commit. mainbrahforwardmana
Can you have more than one -> Yes

,
new branches can be ↓

①new comi
a

↓ -----y
and so on

u

->

multiple branches can point
Fg6 -> Fg222- Fgz

T
at the same commit

branch 2

->" git branch branch 2
"

to create a new branch

What is the checkout operation? - & git checkout (branch name

-> changes which branch you are working on (a -K
.
a

.,
the current branch ; the branch that will move

Forward with each new committ
.

Checkout a branch in order to make it
your new current' branch

.

What is staging ? -> selecting a file (in its most current version) & adding it to the staging area

because you want it to go in the next commit.

-> B a sically ,
a singular "commit" can save as many files as you want it to o but

you can only create the new commit once
,
with one click.

· Before making a commit
, you add every file (o which you have made changes

↓ a little waiting room (called the "staging area") -- This process

is called stunning.
-> ITEN

, you make
your commit", & it takes out everything in thewaiting room

und puts it in the commit , thus incorporating the staged changes.

· staging ? -> $ git add"I. txt" "2. txt"

picking the files you want to commit

-> to stage every file in the project :

I git add
· committing ? -> $ git commit -m "commit message"

·

every commit must have a message before being sent . You should use the message to

briefly describe the new changes that were made
.

-

Branching and Merg ing -

(Git operations)

What is buching.?
-> 2 branches pointing at the same commit can create diningversions

of the code,

· since only I selected branch can more forward with
every

commit.

What is the command Syntax for i I
$

git addemit -m"
...

"

I git commit-m" ...

>

3
$) git checkout main

Why is it useful ? -> It allows you to diverge from the main line of development & continue to do work

without messing up the main line

-> you can attempt new stuff (like adding features or fixing bugs) wo having
to worry about ruining your main code

,
since a version of it is saved under

a different branch
.

-> Why do you need multiple branches to do this ?? Doesn'tcommitting already serve

the purpose of preserving aversion of code ? Why involve multiple branches ?
imgl

Ex ample of branching ? #main ----)
main imgemain-

↓ commit

Commit⑭-> Dmit -
a5

↓ ·
$ git checkout main git checkout dev ↑

S git commit-m"
..." git add ev

$
$ git add

- 6) git commit -m
"

...

"

↑
-> by switching back to an old branch & then creating another version of the code,

with different changes committed
, you have branched ! Notice how image 3

~

starts to look like a tree with branches
.

NEXT : Fetching
, pulling , pushing

Motivatingthe 00lobjectoriented) way
What is the non object oriented -> All functions are static

approach ?
-> All of thelode for a program is in just e fileklass ... a .k. a you

do everything in "public static void main
...

3" ; no external classes

are called; very elementary ?
-> All variables are either declared locally or passed in as parameters.

-> use static helper functions within the main class (like we did in 110 assignments
· all of these functions act as a library of functions used by our application.

What does "static" mean ? -> non object-oriented ; global ; can be called by anybody
What is "public static void ->

a special froction signature that Java uses to identify where to start the program
entire

main (String [] args) &" ? -> so only one class in a program will have it ?

->
any external freations

,

like Scanner
, equals ,

etc . are all objects : its

basically useless to try to create a program without any objects
What is the anatomy of

string triangle - category (double ax
,

double ay ,
double cy) [

a function ? z ---
the value type

name

parametersof function
that the function

will produce/return

Triangle example : -> ax
, ay

,
by

, by
,

u
, cy are all double values that specify the X-andy-

co-ords of a triangle ...
in the non-00 example, we created a

bu of static helper methods to calculate perimeter ,
area &

triangle type (isocelesets .

) For a given set of co-ords

· in non-00
,

these vals were provided by us as parameters.

· Also on us to manually verify that each set of 6 vals actually

represent a triangle
What is the idea behind +It flips this relationship between the input& the functions performed on it.

-

00-programming ? -> Designs/creates a language that allows us to collect data together as an

abstraction... and encapsulate this abstraction into a piece of software

that provides us a much easier way
to work with the data who

having to know any of the internals & specifics of how that data is

interpreted ,
maintained

,
& used

-> for ex
,

if
you have a toe of data of triangle co-ords & you want to use

it to do something else (like in a completely unrelated project) ...
then it

makes W more sense to create a separate class containing all of these

calculations & methodso which we can then utilize across/in any other file

by calling it... than to type out all of the calculations all over again in your new project.

idea behind 00- -> Formalizes the collective meaning of these pieces of info
,
as an

programming (con't .) abstraction.

-> The abstraction provides a means to query properties
,

invoke "behavior"
,

& save objects of that type .

- The Steps to 00-programming-
name the abstraction -> In Java: create a class corresponding to the abstractions name.

·
i

.e
.,

what is the thing' we are trying to abstract
red = referring

·

ex : Triangles example

-> so
,
a newjava file named after the abstraction

Triangle-java
public class Triangle

How are Java 00
programs

->
I class with a main method owhere we do the programming

structured ? ->
several other classes that define objects that are used by that program.

② declare its fields -> we want to collect the data that defines the abstraction ; the fields

of the object/abstraction are pieces of info that collectively define it
.

-> ax
,
by , x

, ay , by, <y ...
all double values

②

I ->

double ax ;

to Triangles .Java

How do you declare the fields ? ->

they follow variable naming rules of "type name ;
"

B , they are not local variables.They shouldn't be inside
any function or

method, rather floating off by themselves.

-> declare them all at the top of the class body (for organization)
public class Triangle &

double ay ;

double bx ; & therea b
double by ;

double X ;

double my ; 3

How do you access an object's -> name of object instance) +
-

+ [field name]
field value in the main method? int num = testtriangle length ;

TIRMINOLOGY : ·

Object : the thing being abstracted (triangle ,
for ex)

...
there is only I object

· instance : every new version of the object that is created by the constructor is an

"instance" of the class (Triangle testerd is an instance of theTriangle class")
·

method : Javaspeak for "function"
... they are synonyms.

&
define a constructor - Job of constructor : fill new object with values in its fields

.

What is a constructor ? - A special type of thing (?) that creates & initializes new instances of

the object

-> Although it somewhat acts like a method
,

it is NOT a method/fruction
-> constructor is run when we ask to make a new object (triangle) ,

and

fills in the finds of the new instance
.

->

they are NOT considered members of the class

What are the "members" ① fields the collection of fields &
&

methods make up the "class members"
of a class ? ② methods

How do you declare a
-> differs from normal method ; specific form/rules to Follow :

constructor (inside a class)? · the name of the constructor most match the class name

· Does not have any return value or return type , because it doesn't
-

return anything... just used tocreate instances/objects
· cannot be called

,
the

way methods can

How does Java create -> Whenever we run a line of Java code to create a new instance
,
Java

-

memory for instances ?

-willbutasidethememoryneededtomakit lithe heaa the

constructor

·

sets aside enough memory to store 6 reac numbers.

-> After creating the piece of memory ,
Java starts the constructor .

What is "this" ? -> a special keyword inside the constructor that refers to the new

object to be initialized
space

-> its essentially a memory pointer/reference to the memory" that Java

set aside for the new object ... so that computer knows whe to send the

data that is passed through the class fields.

-> can think of it as the current object .

O
new keyword invokes the constructor & effectively allocates space for the

new object.

② the constructor fills the object fields of the current object with the

Keyword this (like this
.
ax = 3)

... "This"points to the space created

by new
, and the object fatalfield info is sent there.

How do you give constructor info to fill its fields? - by passing them in as parameters ,
similar to what we do with methods

Example of declaring m "public Triangle (double x1
, doubleyt,

double x2
,

double
y2,~

the constructor? -> in the class body ; double x3
,

double y3) E

② "public" meaning that any file can use the constructor ⑧
this

. ax = x1 ;

② Name of constructor (same as name of class
this ay =

y 1;

⑤ all the values the constructor takes in
,

to build the object ; the
this

. by = X2 ;

parameters.
&

. must follow "type + name" o
this.x = X 3 ;

& "this" points to the new piece of memory
that was just created this cy = y 3 ;

-

for this instance
,

and fills the finds lax
,ay

,
etc.) Setthe field ofa

double y 3 .

"

with the data passed in by us through theparameters (x1
, y],

e.

· FORMAT : this
.

(name of field) = [name of parameter 1 ;

How do you call the ->

using the Keyword "new"

constructor ! -> new invokes the constructor and allocates the
memory for this new object.

GExample of calling the - In the main method;
constructor ? Triangle testh = new Triangle (5.

0
,
1

.

5
,

3
.

0
, 6

.

0
,

6
.

0
,

4
.8) ;

↓ -

constructor /class(↓ the values of x1
,
y1 ,

x2
,

etc.;
object name

name of new the values of the parameters
, set by us

instance of object (the user)

When is "this" implied -> If the name of the field is not already the name of
any local

-

land can be ommitted) ? parameters or variables in the function
,

then Java automatically
treats it as if a field of "this" object... so "this" is not necessary
When setting that field :"

public Triangle (double x1
, doubley1,

double x2,

double y2 ,
double y3

,
double y3) E

=x1 ; -ax = X1;
tyI; ->

ay = y2;
Kx2 ; - bx = x 2;

· 0 - 3

-> BUT, if the parameter names of the constructor match the field names
,

then

We can't use inuedthis because its unclear :

public Triangle (double ax
,

double by
,

doubleX,

doubleday ,
double by

,
double cy

1 E

axXx1; the computer will assume you are referring to the parameter x ,
not

3 the field in the constructor
,

so it will not fill (or at all reference

aY, the field like
you are wanting it to

· 0 - 3

↑
Define instance methods& attaching "behaviors" to the object ,

that make it possible for the object
to execute actions or compute things about itself

, and return an answer.

What are instance -> Functions/procedures that depend on the specific instance

methods ? -> coded inside the class body
-> these functions execute instructions to return a value based on info from the fields,

for ex
,

a method that returns a string with a category name for a triangle
object (scalene

,
isoceks

,
equilateral) after doing computations withthe

Co-ord values

How do you declare one? Without a "Static" Keyword because they aren't global/general ... they are specific
to each instance of an object/class

How do you call one? -
called in main method with the

"

.

"

operator ;

reference. Method() ; or

this.Pued. method() ; or

Feld .

method() ;

static versus instance ->Static : general , public methods -> Instance : only make sense if referenced

methods ? · referenced through the CLASS through a particular instance
(called)

name (if/when being used in
·

referenced through the instanare

a diff class) object's name

· coded in main method
· coded in the class body

static double pointdistance (double x1
, public double area ()

double x2 , double y2 ,
double y 2) & double side

_
ab= Triangle Main point _distance (ax,

return Math
. sqrt((x1-x2) & (x]- x2) is ay

,
by

, by) ;
- ((y2 - y2) * (y2 - y2))) ; double side_bc = Triangle Mainpoint-distance (bx

,by,

· This is an example of a

2x
, cy) ;

static method being called double side
_

ca= TriangleMain. point-distance (2x
,

2y,

ax
, ay) ;

doubles = (side _
ab + side

- ba + side
_(a)/1 .

0 ;

return Math
. sgrt)s * (S-side

-
ab) · (s-

side-bc) (S-side-ca)) ;

3

· calling (in main method) ;

Systemort
. printin (test1 . are a (l) ;

summary : classes and objects-

-> Fundamental units of abstraction in Java

What are instance fieIds & - methods in a class that are used to fill fields with values specific
- -

methods ? to every instance of the class object
·

every object contains the same fields
,
but the instance methods

are used to derive & assign thespecific values for each field in a

given instance.

· for ex ; triangle height
,

area
, category,etc.

What are class fields and -> fields & methods in the class body that are not associated with any
methods ? articular instanceP

they define values & helper methods that are associated with the class/
abstraction as a whole i . e .

One constant value for
every instance of the objecti

-> distinguished by the static Keyword .

(other than that
,

declared in the same

way as instance fields.

-> EX : named constants that will be used inside the class

· convention is to declare static fields
in alleaps

,

and
&with the "final" Keyword

word ? - FieldsWhat is the final key that are marked as final can never be reassigned after the constructor has

given them their initial value.

What are objects ? -> C ach object is an instance of the class

(ignore my mixing up terminology before
,
it doesn't really matter that much

-

I ->
then fills with values.

body

as long as you understand the concept of an objectA (Triangle)
laka the class)

,
and of all the separate instances of the class (tester I ,

test2,

Avitriangle ,
etc.)

- an object is a collection of named fields that represent information

about that object .

- the "state" of an object is reflected by the values currently assigned to those fields.
-> the "design" of an object (aka the decision of what fields to include in an objects

reflects its use(how the object will be used .

summary : how does new"work? - When we type "new" we get back an object called new

-

Every time we call new ; we get a different new object which the constructor

I
* instance methods (define its behavior)

What is a physical analogy
-> CLASSES = FACTORIES :

for classes & objects ?
· blueprint for the object = A instance fields (define its datal

· Factory's facilities &= class methods

maintenance * class fields

-> OBJECTS = WHAT THE FACTORY BUILDS

Summary ofhow
a

a

I

Encapsulation
How do

you decide what fields -> choose fields that fundamentally identify the object

o make when designing a class ? · the smallest set of info that you can use

-> Avoid redundant fields & fields that have relationships to each other that must

be specifically maintained.

Why this methodology ? I -> minimizes amount of memory used for the object
-> reduces/allows you to avoid a lot of bugs .

- EX: the most efficient way to define a square in just [fields:

& co-ords of the lower left corner

② a value representing the width (which is = to height
What is encapsulation? -> the concept of bundling data Ca.

k . a - Fields) together with the operations
(methods performed on that data.

-> Some times also called "information hiding .

"

What is the 1""principle -> Shield an objects internals from the rest of the program,
in order to

of encapsulation ? · prevent instance fields from accidentally being changed.
· be able to refactor internal code without breaking external code.

How is this done ?
-> using the "private" access modifier

What is the 2nd principle
-> Explicitly define "external" and "internal" behavior (eg. : fields

,
methods,

of encapsulation ? variables that are essential to defining an abstraction versus those that are being used

in the
program ,

but that theuser of the program doesn't need to know about to use it)
,
in order to

How is this done? · make code more modular

·

make objects easier to understand
,

maintain
,

use
,

and change .

-

By defining an interface

What are access modifiers ? - Keywords that are used to control the visibility & accessibility of

fields
,

methods
,

and constructors in a class
.

(can other classes invoke this method?

What are the 8 accessmodifiersrate : member is only accessible lable to be called) from inside therein Java ?

class body ... private fields are "completely encapsulated" in their class.

↑ protected : member is only accessible from inside the class and subclasses.

default : member accessible from anywhere inside the package

public
· member accessible from anywhere.

Bsulated

-> "private" and "public" are used most often.The other are generally for

special cases.

-> if no modifier is specified ,
assumed to be "default"

-> According to encapsulation ,
all fields in a class should be marked private !

so that there is no risk of their values being accidentally changed or

manipulated byzode in other classes.

What are getter methods? -> A method (in a class
, usually) that is public and is used to

retrieve the value/data from a particular field in the class.

Why are they useful ?
-> Since class fields are private,

if (in main method or other classes)
you wanted to retrieve

and use the value of some field of an object , you cannot directly get to it.
-

-> By having public getter methods obtain the field value (which they have

access to since they're in the same class as the fields) and then return them

to
you ... the field value is protected

-> the getter is a sort of middle-man that allows other classes to use field values

without being able to manipulate them.

When should you use getter methods?
-

Always ; even if you are making a public field for some reason
, your code will

be more secure if
you configure it to be accessed by a getter.

method name

& at a

How are they formatted? type - I get + name of field
,
in camel case)

public double getLength))E
return length; 3

↑
the field

What are setter methods ?
-

> public method (in class body) that sets or updates the value of a field.

-> if you want the user to be able to change the value of a field after initially declaring
it

,
setter methods are the most secure way.

britanamesexter
method name

How are they formatted ? (same convention

since there's
as getters/ takes this new

val

no return value
field ↑ data

as an arguement

- name b type S
↓ b

public void/set Length (double length)

setting a new
valuelength = length] ;

for the current object
(in that field

What is getter validation ? -> If the user tries to set a field to an in value (i .
e. a string if

theField type is double ; a negative number for a length value
,

etc....

there needs to be a way for thecetter method to check & validate the

incoming value

-> Add code to check for an illegal value
,
and if one is detected

,
throw an

V

to the setter

error to end the program .

explanation of

Example of validation? public void set Length (double length) [why its invalid

↑
↓[if (length 0) E

-

condition throw new Illegal Argument Exception ("negative number")
for invalid

valve

3
update the valueLast

,this. length = length] ; - only if validation passed

3

What are derived fields ? -
an imaginary "field" that is actually just a calculation or transformation

of other fields.

-> doesn't need to be stored in the class fields & doesn't need to be one of

the parameters of the constructor

·For example , the ed of a square object when one of the class fields

is "length"... You can dire area from the length value.

How do we store them." -> Rather than storing them
,

write a getter method for it that includes

the calculation

·

the calculation can just be done on demand inside the getter method.

public double get Area (1 E

return length * length ; 3

Example of a class with Javafile- public class Square [

encapsulation topics covered so private ,
encapsulated private double length ;

far ? fields declared
privateString color ;

public Square (double length , string color)[public

& constructor
this length = length ;Jthis. color = color ;

public getteor 3

methods ted public double get Length () [

encapsulaa return length ; 3.

-
public String get Color () E

return color ; 3

3

What are immutable objects?- values that cannot be changed after being initialized.

-> if an objects fields are immutable
,

then so is the object itself

-> This is a good thing to have
. By making fields private and writing getter methods,

we have made our object immutable.

- Interfaces-

What are Interfaces ? - An abstract data type that serves to provide a well-understood description of

every method that the class promises to provide.

-> Similar to a class in that ;
·it is defined in its ownjava file

· the interface name is a "type"
Just like with classes ; The Trianglejava class defines a new object
of type Triangle)

· the name of the interface should be the same as the name of the

file

How do they differ from -> Classes : need to fully define the object... Fields
,
constructor

,
methods

.

classes ? -> Interfaces : hardly any code
, just a list of method stres ;

no fields

What goes
in an interface ? - It is a list of methods(just their names

,
not the coding of them) that

something that implements this Interface is promising to provide.

-> The Interface as a whole 18 therefore all of its methods) are declared

publicly
-

they have to be
,

so that impl classes can use them.

-> Its sort of like a contract ; every class that implements a particular

Interface must include a coded implementation of each method

defined in the Interface
,

and menty those methods.

What do you mean by - Classes
inment Interfaces

... they specify this in the class definition

"implement" ? using the "implements" modifier.

-> implementing classes Must declare the methods as public
What are the naming conventions - In an example of a program seeking to create an abstraction of just 1
For classes & Interfaces ? object o there will only be one class implementing the interface.

that Interfaces are allowed to have ?

I
②

·

i . e
.,

methods that are related to the abstraction
, but not specific to any given

(although it is possible for several classes to implement 1 interface

- Therefore
, the Interface is typically named after the object type,

and the class is "object type]Impl"
What are the Lother things - static methods

object instance

why are static methods allowed? -> Because (unlike instance methods)
,
they don't need a specific instance or any of its fields

to be implemented.
⑰

What is the second thing ? - default methods (the ONLY time an instance method is allowed in the interface)

What are default methods? - Instance methods that can be implemented/codedely using other

methods of the interface

·

as opposed to methods that access and work directly with the field values

return sidelength) + sidez length)); return get(x) - other. get (X) + get (y);- -
cannot be a default method can be a default method

What do we do with them? -> bl of their nature
, they can actually be defined in the interface rather than a

specific implementing classs ... in the Interface
,
we define the method

with the Keyword "default" at the beginning ;
SomeInterface , java

default double some Calculation)) &

return get (X) - other. get(x) + get (y) ; 3

What is special about default methods ? -> Implementing classes can still choose to define their own implementation of the method !

Or they can use the default ... they have that choice.

comparison of class versus CLASS :

interface ? Triangle Impl . java

public class TriangleImpl implements Triangle & · class definition

private double ax ;] fields

private double ay ;

public Triangle (double ax
,

double ay)
this

. ax = ax ; f constructor

this ay
= ay ;

3

public double dist (double ux) E coded implementations

Saw - ↑ of methods

declared by
return L

Interface
3

INTERFACE :

Triangle , java

interface definition ·

public interface Triangle &

list of al

[
double dist(ax) ;

method signatures -

3

How do
you "program to -> When you create new instances of the abstraction object (like in the main method),

the Interface"? create them as objects of Ape [Interface]
...

rather

than as "type (object name]"
->

we want to store all the objects of all of the classes that implement a certain

interface... as objects of the "interface type"

Example of programming to public static void main (String [] args) E

the Interface ? Triangle +1 = new Triangle Impl(3
,

6) ;
un um

name of Interface name of object class

⑮
· Triangle Impl +2 = new Triangle Impl (3

,
6) :

What is the advantage of several classes can implement the same Interface
.

encapsulation ? -> With encapsulation ,
we can create new implementations of

the same behavior and use them in our programs -- and no one has to be the wiser.
-

SUMMARY : What does -> separate an abstraction into two parts :

encapsulation do ? & Interfaces : publicly describing everything that the object/abstraction can

do
.

2 Classes : Implement the methods dictated by the Interfaces.

SUMMARY : How do we
-> Define abstractions as one or more interfaces :

support encapsulation ? * getters and setters for direct and /or derived properties

* other methods that are part of the abstraction .

-> And write classes that implement one or more interfaces :

& all fields within a class are marked as private.

& public constructor

& methods that implement any interfaces I must be public.

* Internal methods marked as private.

Encapsulation "Recipe" :

-> 0
.
5 mm thickness

Inheritance For headlines ... 0
.

13 for footnotes

(this
current size

What is inheritance ?- Factoring common code into a superclass.

-> When several classes in a program have several commonalities in their

fields and /or methods (members)
,
we can create a class that contains

only the common members- a superclass
As well as the individual classes that use ("extend") that superclass - the subclasses.

-> for example a superclass that contains "address
,

"

"name
,

"

and "age"
Fields & methods could be called "Person"

·
a subclass named "Student" could extend that class

,
as well as add its own

fields (like "credit-hours") that are unique to the subclass object.

·

can also add its own unique methods.

Person. Java Person contains the members

&

common to bothStudent

super Class and Professor

↑ ↑
Student. java Professor. java

subclass
subclass

· ↑
"Student" and "Professor"

inherit all "Person" members

How do you declare superclasses ->
superclasses : normal Java classes. Nothing different or special about them.

and subclasses ? public class Person & return name ;

3
private string name ;

constructity public Person (String name) & 3

thisname = name ;

public String get Name() [

->
subclasses : declare the inheritance with the keyword "extends" :

public classIdent extends &Person

... 3

· even though the class body is empty ,
a "Student" is a

"Person"
,
so it

automatically its all class members of the Person class.

·

eg, Student automatically has a get Namel) method and a name field.

How do you write the constructor ->
every time we create a new instance of the subclass leg. Student)

,
we

of a subclass ? are also constructing a new instance of the superclass... to construct a subclass

object ,
we dot have to code a new constructur.

Instead
,

call the superclass

constructor using Keyword super (parameter args (

-> the parameter arguments are the same parameters that the superclass constructor takes in

->

essentially the same concept as calling a class's method.

public classIdent extends &Person (can name

-this
public Student (string name2)[whatever you want)

· Super (name 2) :

⑬3
calling the Person class constructor

, passing in "name" as the string
For the "name" parameter requested by the Person class constructor.

What else does the subclass need - Technically
, nothing ! All of the fields & methods of the superclass

besides a constructor with "super" ? automatically exist in the subclass

How do subclass objects exist -> The returned reference for a new object of the subclass can be declared

in memory ? as either a subclass type or its meastype - both references
-

point to the same memory address on the heap !

Person jill Fisher = new Professor ("Dr . Fisher") ;
OR

Professor jillFisher = new Professi (Dr.

Fisher");

· basically multiple "identities" for the same object - this is an example of

subtype polymorphism.
What is multiple inheritance ? - When a file/class/interfacelets.

extends more than one "super" class.

-> it is NOT allowed for classes - subclasses in Java can only have I parent class.

When is multiple inheritance -> For interfaces ! A subinterface is simply a union of all the methods declared in all

allowed ? of the parent interfaces.

So inheritance & class extensioning - Yes ! An Ended interface is one that adds methods to an existing interface

can also be applied to Interfaces ? - A class that implements an extended interfaceJaka "sub-interface") is required
to provide methods for that interface AND its parent(s) Jaka "super-interfaces")

When would you need inheritance -> When you want to define a new type which is a combination of existing interfaces
for Interfaces ? and need a single specific object that implements some combo of interfaces

· want a single type/object to represent a specific combination

· /REMEMBER : the whole point of
any individual interface file is to define/be

a contract for a class/object (
-> Often

, inheritance is just used to pick methods from a few interfaces & pull them together into

a new interface name - not even adding any new methods

· the subinterface provides a tename for that specific combination

Example of mult inheritance -> Lexisting interfaces :

With Interfaces ? O public interface Tossable &

public void tossTo (Point Inspace target) ;

· this interface says that "if
you are an object that is tossable,

you can foss it to some target in space

② public interface Trackable E · "If you are an object that is trackable
,

Point In Space get Position(); I can get your position
.

"

Vector get Velocity 2) ;
Vector get Acceleration () ;

->
new function we want to create : "juggle" function that takes in 3 objects

that it is going to juggle
What type of object will we provide

-

objectsthat are trackable" ? Jaka place method in Trackable interface) #
to the "juggle" method ? · How do we know whether we can toss the objects in the first place? Can't juggle

without tossing .

-

zthat are tossable" ? Caka place juggle in Tossable interface)
· If the objects tossable but not necessarily trackable

,
then how will we track the

objects in order to catch them after tossing them ?

-> Solution : create a new interface that extends Tossable AND Trackable

public interface Jugglable extends Tossable
,

Trackable E

3

·

even if we have no new method to add to this interface
, being "juggable" is just the

combination of being bothfossable & trackable

·

defining this new interface is the onlyway to define this new juggle function
,

because juggle

requires 3 objects that implement both tossable & trackable

S what is the point of making - Since we gave the "fossable & trackable' combo a new name
,
we can create classes (objets) that

this new interface
, "Jugglable" ? are an impl of Jugglable - both tossable & trackable - and can then be fed into the

joggle method without error .

↳ static void juggle (Jugglable obj2 , Jugglable objl
,

Jugglable obj3) ;
-> So multiple inheritance with Interfaces is essentially a workaround to the

single-inheritance rule of classes..

· a class for a "redBall" object ,

for example
,
cannot extend both Tossable &

Trackable because mult-inh isn't allowed. HOWEVER
,
it can implement an

interface which extends both of those... essentially creating the same effect.

I

P m - "Many formsdymorphis
1

->
the princip le of reusing one common name or symbol to refer to many different related

things.

->

bigconcept in 00-programming ; shows up in many different ways.

What are some examples of

hism -> When① Type Polymorp an interface has multiple implementationclasses

·

e .g., Ngiri and Sashimi are I classes that both implement the Sushi interface.

-> When a class has multiple subclasses

·

e . g., Student and Professor are both "Person" objects as well as Student/professor objects.
② Parametric Polymorphism ->

using generics (<T) so a field or variable can take on different data types.

·

e . g-, array Lists ; array Lists can be ofmayhype ; the type is declared by the

coder at the time that they are using it.

③ When multiple methods >
several different implementations ('versions') of the same method

havethe same name ->There are I versions of this :

1. method Overriding - inherited method is overridden & replaced ,
in the subclass.

2. method Overloading
-

2 methods with the same name but different in the parameters

that they take

Polymorphism ?

17

I - program to their common type.

come out

⑧ Constructor poly morphism -> Mul tiple diff versions of the constructor

constructor overloading - constructors with difference in parameters/arguments

sm ! -Why use Polymorphi allows programmers to program
to a specific subset of an object's members.

->

allows programmers to group similar (but different) entities or behaviors together and

- Type Polymorphism-

What are "is-a"relationships ? - Every (subclass type) is - a (superclass type) but not every (superclass type

is - a (subclass type)
-> Every Student is - a Person -> Every Professor is - aPerson

-> Not every Person is - aStudent

What is the "instanceof operator ?
- A &wa operator used to test is - a relationships
-> Exi Person jane = new Person ("Jane") ; 3 definedSaethe

if (jane instance of Professor) [this will

Sort ("Jane is a professor") ; 3 False... haven't specified

3 what type' of person Jane is.

What is type-casting ?
-> Turning an object into a different kind of object (from one'type' into a diff 'type'
->

An object can only be typecast to another objectIf there is a garranteed is- a

relationship (i. e
.

Student is - a Person)

Example of type casting ? Person Kmp1 = new Professor ("Kmp") ;
-

creating a "Professor" object ,

but the
~

reference/type is
a "Person"

cemenonly access the "person" part of the created object ,
because of the type that

we have associated with the name.

-> Now
,
we want to create a new object that typecasts "Kmp1" into aProfessor

type rather than aPerson type ;
Person Kmp1 = new Professor ("Kmp") ;

Professor Kmp2 = (Professor) K1 ;
↳

use paran theses with the desired type inside in order to type
cast the particular object to that type.

initially

What is downcasting?-a type of typecasting where you take a reference to an object that is"typed as

the parent class
,

and force it to be one of the subclasses.

-> basically what he did in the example above
... turning it into a more specific type.

What is upcasting
? -> the opposite .

-> Since we are going from subclass -> class
,
we know that it is ALWAYS going to work.

Therefore
,
we actually don't need to perform the typecast ; the compiler can assume

the casting process.

-> i
.
e
. upcasts are usually implicit; we don't have to do the parantheses thingscompilercanimplicitoa

How does the computer Check' -

At compile time .

Jaka a mine error that is shown before you run the program
upcast attempts ?

· compiler can definitively confirm for deny) the upcast using the declared type
relationships in the code.

· because they can be checked
, explicit casting isnecessary

How does it check' downcast -> At runtime Jaka after you hit play & run the program ...
the computer will not tell

attempts ? you if your
downcast is invalid until you run the program .

-> If the downcast is not valid
,

the computer throws a Dass last Exception.

Example ? Person Kmp = new Professor ("Kmp") ;
- A person object

,
of type Professor

Student Kmp3 = (Student) Kmp ; 7- ERROR ... cannot typecast a professor into
a student

How do is - a relationships work -> Every Impl class automatically has an ina relationship with the Interface it

with Interfaces ? is implementing ;PositionImp) is-a Position
,

for ex

Can inheritance & implementation - Yes ! A subclass extends its superclass & therefore inherently also extends the

exist together ? superclass' Interface(s)
.

Think of "implements" as being at the top of the

inheritance heirarchy.
I

Example of this ? class A implements Inter & 3 · "A is-a InterA"

class B extends A implements InterB 350 "B is-a InterA"

-
· "B is-a InterB"

· "B is-a A"

class C extends Bimplements Inter > E30 "Cis-a B"
,
so "Cis-aA"too

· "Dis-a InterA" o "C is-a InterB"

How can we figure out theheirarchy

· "C is-a Inter >
"

-> We can reason about these types as a graph system ;

of an entanglement like this ? Inter A InterB Inter

&

At
->From this graph ,

we clearly know which classes have relationships with each other,

which will help us Figure out which upcasting is& isn't possible.
· REMEMBER : An object can only be upcast to another if the 2 have a

is- a relationship -- can I reach object XFrom object Y by Following a

forward path of arrows ? If not
,

no garvanteed upcasting.

Upcasting in this example ? B test1 = new B2) ; Z "test2" is upcast

InterA testAsIA = (InterA) test1 ; from Bobject to

an Inter A object
->We know that "B" & "InterA" have an is - a relationship (chain of arrows

Incorrect typecasting example ? B test1 = new B2) ; COMPILE-TIMS
InterC bestAs]) = (Inter) test ; GRROR : we can't definitively say

that

all Bobjs are going
to also be Inter objects ... they don't have an is - a relationship.I

subclass, like "int get Credits()" "String get
Status()"

&

- Method Access-thatsupportssevein

-
What methods can a polymorphic

-> When calling a method to an object , you only have access to the methods defined

object access ? for the type that you declared the object as (i.
e

.
its reference) .

Ex ? - Student avik = new Student ("avi Kumar") ;

· avik object has access to all methods in the Student

· Since Student
.javaends Person

,java ,
it also has access to typecasting

example
Person's methods. VERSUS

Person avik = new Student ("avikumar"); o Student arik1 = (Student) arik ;
·

even though arik is a student
,
it has been declared as a Person type &

thus only has access to the Person.java methods (like getName()

What is the "Object" class ? - The Mother of all classes
... Parent class to all classes in Java

.

n clas automaticallyimplicityinherited theObesSim

_outdoony
the methods defined in the Objectsa

·
Object avik = new Student (vi Kumar") ;

OverloadsOverriding and g
Recall the 3rd type of Polymorphism & When multiple methods havethe same name

2 pages ago) -> several different implementations ('versions') of the same method.

->2 versions of this : Overriding & Overloading
What is method overriding ? -> When you inherit a method from a parent class

,

and replace it.

Since subclass has already inherited that method
, overriding isn't cary ;

without it
,

the method (as defined by parent class) will still run.

-> Subclass desires to have its own subclass - specific implementation of the method.

What is overloading ? ->

Providing multiple versions of the same method
,

but which differ in some way.
· in particular

,they have to differ in their parameters (the arguments they take in) .
-> can also overload constructors.

- Overriding -

When is an overriden method -> Anytime its called in relation to its corresponding objec- even if the reference is

going to be called ? as a parent class .

->
e

.g ., say Professor has overriden the Person getName)) method to add "Dr.

"

in front

of the getNamel) String .

both of the Following objects will utilize the overridden method :

Professor emily = new Professor ("emily") ;

Person emily = new Professor ("emily") ;

What is a compiler directive? ->
a one-word token preceded by the "@" sign that is used to hint to the compiler

the role or constraint of whatever is coming next!
>

method you've inherited

->Compiler can check to make sure the constraint is true & works.

-

Compiler directives are not necessary ,
compiler will still work & compile code without it.

Why use compiler directives ? - useful as a backstop to help you check for types & small bugs & etc. You're basically

telling the compiler "make sure I do what I'm telling you I'm going
to do

,
and if not

then warn me .

"

What isOverride ? - a compiler directive that will make sure that the method in question is actually a

->

goes on its own line directly before the overriden method.

->

They are OPTIONAL

Can we access parent class fields - No ! When writing an overriden method in the subclass
, you run into the problem that

when rewriting methods ? the parent class' fields are private ,
so we can't use them ;

3 ⑳override&Professor
public String getName() E

return "Dr .

"+me ;

& this will NOT work because "name" is a private field in the Person superclass.

How do we resolve this issue? -> 2 solutions :

1) change the access modifier for the parent class field (c) from

private (member only accessible inside class body) to protected (member

accessible only from inside class&n subclasses).

"protected String name ;
"

- not the best solution because we have relaxed the protection of a field For ALL subclasses

just so that it can be accessed byI subclass.

->

goes against encapsulation

2) call the original (not overridden) method from the parent class using the Super

word

everride
Professor. java

public String getName() E

return "Dr .

"

+ super. getName() ; 3
-

calling parent class' get Name method
,

which DOES have access to

the private fields.

-> "Super" restricts you to the superless version of the method.

What is a virtual method ?- The idea of always going to the most-overriden version of a method (applicable to

the object)
, regardless of the assigned typee.

>
In Java

,
all methods are virtual

. (But not other languages)

the super Keyword is kind of like a toggle/"escape" if
you want to temporarily

What does it mean when final is ! ->
Key

return......; 3

turn the virtualness off
.

"Virtualness" is the default way.

word ? -> makesWhat is the "Final" key fields/methods/objects immutable

added to..

a method ? -> it means that that method cannot be overridden by a subclass

-
makes overriding "illegal .

"

public final String getName() &

a field or variable? ->
means that the value of the field/variable canchanged after instantiation.

final String name ;
a class ? -> means that that class cannot be extended or have subclasses

.

Final class Professor S
... - 3

- Overloading Methods-

How do we distinguish between -> Even though they have the same name
,

the parameter lists must be different

2 overloaded methods ? -> for ex
, one public void promote)[and another public void promote (int status) &

-> the return types do not have to be the same.

-> Another ex : a method that takesparameters ,
and another method of the same name

that takes 2 parameters &, within the method
,

sets default values for (what would

have been) the other 3 parameters.

Requirements of overloaded methods ? -> They have to have the same access modifier

-> Have to have the same static/non-static status.

- OverloadingConstructors -

-> providing multiple constructors ; they have to have different parameters
· so that the compiler knows which constructor you are calling (based on the arguments

that you put in.

-> EX :
· A professor constructor that takes in String name & sets default status to 0

.

· AND a professor constructor that takes in both a string name & an int status

Why use multiple constructors ? -It's convenient ! Allows you
to make context specific versions of a constructor (or

method) to perform the same action in different situations.

-> It is rarely necessary
- just makes coding easier.

What does it mean to chain -> the way for one constructor to call a different overloaded constructor.

constructors ?
·

e . g. if
you want to create a second constructor that is just a "special case' of the

first generalized constructor

~ this applies to the Proffessor example above

constructors ? ! I 3

super (name) ;

-

calling parent class .

How do you do constructor chaining? -> To call a different overloaded constructor
, the 1st line in your

current constructor

should be this ((parameters of constructor being called])
-> If a constructor is already using this)

,
it doesn't need the super)) call.

Example of chaining
constructor public Professor (String name

,
int status) &

this
.

Status : status ; setting object's status field.

public Professor (String name)
constructur I

3

2 thisname
,
2) ; calling constructor I

& essentially ,
constructor 2 creates a new Professor object with the status pre-set to 2

.

&

Parametric Polymorphism

- Using generics (T)) so a field or variable can take on different data types.

What is a generic type ? -> A class or interface that takes a data type as a parameter.

-> For example ,
Lists and ArrayLists -- they have to be declared with a specific type ;

ArrayList <Student) StudentList = new ArrayList() ;
↳ declared

type

How is a

generic class defined ?- After the name of the class
,
use With a list of type parameters inside

,
to

act as placeholders for real data types.

What is a type p arameter ? - Basically
,

we don't know the type that the class will use until it is used .
So intend

,
we

create the class using an arbitrary colder data type
- the type parameter.

->
the type parameter (TP) isn't an actual data type

- We define all the code in the class w
.
r

i
t

.
the TP

, acting as if it is a real data type

...
und THEN

,
when the class is called

,
the user declares the actual data type that they

(like ArrayList (String) (

want to use

·

all of the mentions of the TP inside of the class get replaced with the actual data

type name.

Container. java
Main . Java

public class Container <TP) Container<String) food = new

private TP contents ; Container >) ("Fries") ;

public Container (TP item]) E Container(double) price = new Container

contents = item2 ;
< (1

.
67) ;

3↑
-> Once an object has been created with a declared instance type , the type can't be changed.

public TP getContents() E

return contents ;

3

What types of data can be used- ONLY reference types-- a . K . a . only objects (no value types)·

-> Contin generic type classes ? ainer [int) numbersWould NOT work.

Then how do we use generic classes-> Java provides a corresponding reference type version for every value typee.

when working with value types ?
& for value type int

,
there also exists an Integer object ... object =

reference type.
B

bool - Boolean char-character and etc.

-> If we want a container with integers inside
,
we can use the Integer object class instead.

Container<Integer> numbers = new Container <> (1) ;
I

How do we convert between -> the compiler automatically does this for us. What that means is we can retrieve

Integers and into (for ex .) ? int values from a generic class of Integers wo having to do an extra conversion

step . Vice versa for adding int vals to a generic class of Integer vals

⑫ int retrieved = numbers. get Contents () : · · would return I
(see previous page)

Reference types V. S. Value types

What is a value type ? -> A type that is defined entirely by its -a string of ones and zeroes that is

stored directly in memory in their specified location.

- int : stored as a string of ones & zeroes in A bytes of memory (remember int is

RECALL : What are Java's -> byte short int long
8 valve types ? float double char boolean

-> Everything else outside of these 8 items is an object
What is different about objects -> They exist/are stored in the heap (not the memory
(v .S .

value types) ? -> We refer to them through a reference in the memory that points to the

actual object in the heap

What is a reference type ? -> For all objects ,
the value of the variable (the declared name of an instance of

the obj) is actually a memory address that is stored in the memory.

-> This memory address is a reference to the objects not the actual objectI
S

&

size 4-byte

comprise the integer (located in memory).

itself. The mem .
address points to the location in the heap where the

actual object lives .

int mm = 2 ; & this isatypariable ; the valueo

"num" is the actual string of Os and Is that

tringname = "ella"
& this is atypevariable ; the values

Studentary = new Student /"avi") ; of "name" and "avi" are memory addresses
&

(located in memory) that then point to the actual

String and Student objects (located in heap).

Switch/case statements

What are they ?
-> basically just a fancy version of if and else - if statements.

-> we take ae
, go to each case statement inside the body of our switch & compare the

valve to the value associated with that case
.

-> The first time we find a match is when we start executing ,
& then we keep executing

until either

⑬⑨ we his a "break;" statement or we get through the whole body of the switch.

-> The most commonly used format is where all of the cases are separate & each ends in

a break statement to prevent you from falling into the next case.

· Howeve
you can use them howe you want ; cases can fall into other cases.

("Season" is anHow do you code a switchase2 compare to an if-else statement :

③
int variable)

Statement ? Switch (season) E
-

case o :

answer= "Spring" ;
break ;

Thi↑ case 1 :

answer= "Summer"
break ;

case 2 :

answer= "Autumn" ;
break ;

Case 3 :

answer= "Winter" ;
break ;I -> the value that we are going to compare with each case.

default :

answer= "still unknown" ;

3

->
the value associated with the case

,
which gets compared with the main value.

-> the action (s) that get executed If the case val matches the main val .

-

optional "default" case
,
if no other case provided a match but we still want to

perform an action.

-> the actions executed in default case.

e ionsnumerat

-A
programmer

- defined data type that has a predefined ,

finite set of

possible values.

-> Enumerations -

Keyword enums
-

are usually declared in their own java File OR directly ties

in the body of a class

When are enumerations useful ? -> When we want to limit the values that we are working with to a finite set of possibilities.
> The data type in an enumeration is essentially a list of the defined possibilities

What is the value of these "possibility" objects?
-

They don't actually have any inherent value associated with them - they are just

Ambols that help us write case-by-case code.

Can we code without enumerations? Yes ! They just make programming easier by making the compiler do the hard work.

Example ? -> Refer to switch case example from previous page (seasons)

o

we are setting a string to a certain value based on what season it is
,
and we chose

gers to represent the different season' possibilities ...

but it is up to us
,
as the

programmer ,
to keep track of which integer corresponds to which season.

-

e .g. O = spring
,

1 = summer
,

2 = autumn
,

3 = winter

· Also
,
we have to worry about dealing with invalid or out-of-range inputs & other edge cases

(which means throwing exceptions
,
writing more code

,
etc.)

How would an enumeration make -> It does this job of converting an integer to a specific meaning
for us !

this process easier ? - In an enum
,
we just create the set of symbols (compiler associates integers with

the values under-the-hood
,
we don't have to worry about that

-> Now we have a specific Eype (e . g.
Season) that can be used for avariable

,
&I -> Non we also get all of the nice type-safety & value-safety properties that come with using a 'type !

this variable will be restricted to only being one of the defined symbols (as opposed to an infinite

number of integers) ,I can't be set to something nonsensical .

How do you create /formatanenum? -> O he option is to make a separate class
, except instead of "publiclass" you

say "public enum" ;

public enum Season: E · the declared name of the type
M

-

SPRING, -
· The "Season" enum defines & possible values

WINTER, SFALL
,

· · The limited list of all possible "Season" values

SUMMER
· These 'objects' serve as nothing more than symbols ;

3 thus
,
we don't need to define them further !

· should be listed in all caps

How do
you instantiate the enum object- via the format variableTypeName . POSSIBILITY NAME ;

in another class ? -> For ⑫ Season currently = Season . AUTUMN ;

What is a real example of
-> COMPARE : Season case example using case statements - NO ENUM :

how usingems is easier ?

public Static String SeasonToStr (int season) & ·
·

scason is an int
, so (basically

String answer= "Unknown" ; infinite possible input values

Switch (Season) E
·

·

manually keeping track of which
case o :

answer= "Spring" ; int corresponds to which season

break ;

case 1 :

answer= "Summer"
break ;

case 2 :

answer= "Autumn" ;
break ;

Case 3 :

answer= "Winter" ;
break ;

default :

answer= "still unknown" ; 3

-> VERSUS making the same statements with an enum :

public Static String seasoniostr(Season season)
.

·The method takes a Season enum

String answer= "Unknown" ; input from user
,

rather than an int

Switch (season) E

case SPRING :a
· The job of having to assign int

answer= "Spring" ;
break ; values is eliminated ; just check

case SUMMER :

each case for the value of the
answer= "Summer"
break ; "Season" object .

Case AUTUMN :

answer= "Autumn" ;
break ;

Case WINTER :

answer= "Winter" ;
break ;

default :

answer= "still unknown" ; 3

Composition and Aggregation

aggregation' ? - 2 endpoints on a spectrum of program designs about how objects relate to the objects

that they encapsulate

-> Ags.
& comp. are both relationships where one object encapsulates instances of other objects.

> The difference falls in the relationships between the outer and inner objects .

bstraction? - IWhat are layers of a Lind of like the complexity of a class

-> For more complex programs ,
we build objects out of other objects rather than having just I

Outer class where everything is flattened down to just primitive fields - that is long & tedious

Why usethis method ?- to manage complexity & be able to reason about the relationships between objects in a more

What is composition &

I
->

"

making smaller objects work together
"

lots of

manageable way.

tween ->How can we distinguish be Simple Classes Complex Classes

simple& complex classes ?
· fields are primitive data types ; int

, stringets.
· encapsulated fields are objects

·

a class is simply a "container" for its data themselve- not limited to just
·

classes define operations on their fields int
,
double

, string ,

etc.

tweenWhat is the difference be
Aggregation Composition

aggregation & composition ? · the internal objects can exist independently· The inner objects cannot exist without

without an outer containing object an outer containing object ; they aren't

ects have (or have potential to have a meaning ful without it.·

internal obs

ful
purpose & use outside of this objectmeaning

-> However, classes can also be aed of agg .

& comp . -it is a spectrum of

design choices. It can sometimes be hard to say whether a relationship is an agg or a comp

- Aggreg ation -

What are some signs that a class- The encapsulated objects are provided externally .

is using aggregation ? -> Some (or all of the constructor's parameters are objects from another class

Ex : Public Roll (Ingredient Portion [] ing , String name) E ... 3
-

anentirelySeparata

- There may also be getters & setters or methods wh the ability to remove that object from

the class .

-> Encapsulated objects are also independently referenced outside of the aggregation.
-> i

.
e

., they have their own "lives" & utilities outside of the current class ... including

potentially being part of a different aggregation !

->

Aggregation = taking independent things & giving them together.

- Composition-

What are some signs that a class +ncapsulated objects are created internally ;

is using composition ?
-> usually within the constructor - the parameters of the constructor are usual data types,

and objects - are created from these parameters inside of the constructor , sort ofon-the-spot

-> usually no setters or getters for these internal objects--they aren't meant to be exposed to

the outside world . Exception- dependency injection .

-> telltale sign : constructor usually doesn't take parameters
-> Encapsulated objects don't make sense outside of the abstraction

-> they usually aren't shared with other abstractions.

> Encapsulated objects' functions & states are only accessible through the

composition. composed
-> Only the current "class can call the objects' methods or retrieve info (getters) about the

object.

-> Composition = having internal parts & organs that only belong to it.

- Composition over Inheritance-

> Example for notes : A class "ABCImpl" which implements Interfaces A
,

B
,

AND C

What are the 3 approaches for writing a No hierarchy ② Inheritance

terfaces ? ③ Compositionclass that implements multiple In

Option 1 : No hierarchy

- I -> Public class ABCImpl Implements A
,

B
,

< E
...

3

"

[

-> Directly implement all of the methods for all of the interfaces

I -> = implements
-

- - -) = extendsABLIMPI - B

->

How does this look in memory
?

-

> Every instance of ABCImpl exists directly in the heap.

Option 2 : Inheritance -> Works best if A
,
B

,
and C already naturally lend themselves toward some hierarchy

ABCImpl ->
-⑭ public class (pc) AImpl implements A E ... 3 I

pc ABImpl extends AImpl implements B 2 ...
3 ABImpl -> B

pc ABLImpl extends ABImpl implements <E ... 3 AImp -> A

-> If A
,
B

,
C already related in some way

,
then this is a good approach to use.

How does this look in memory?
-> Every instance of ABCImpl exists in memory as an Almpl

,
ABImpl ,

AND ABCImpl object (polymorphisms

Option 3 : Composition -> A
,
B

,
andC each have their own basic implentation objects (AImpl BImpl (Imp)

-> Then
, ABCImpl WILL implement A

,
B

,
and C

...
but rather than explicitly defining each of the methods

dictated by the interfaces
,

it will designate its own internal private A object
,

B object, and object

-> So whenever ABCImpl needs to do something that it promised to do as an Impl of AlB/ , it just turns

around and uses its internal A/B/C object to do that thing.

- Approach works best if A
,

B
,

and I are separable/independent (unlike with Approach 1)
-> D ~ blic class AB(Impl implements A

,
B

,

2 E

private A object ;

private B bobject ;

private CcObject ;
... 3

How does this look in memory ?
-> 8 objects created in memory for each instance : ABCImpl object

,
as well as an A

,
B

,
and object

Bottom Line : when do Iuse inheritance -> When the problem seems heirarchical : Inheritance

-> When given the choicee... FAVOR COMPOSITION !

versus composition ? I > When the problem components are independent : Composition

Abstract and concrete classes

What is an abstract class ? -> A class marked "abstract" cannot be constructed directly ,
because it contains abstract

methods.

-> If there is at least one abstract method in a class
,

the whole class must be marked as

abstract.

-> Must have subclasses ; an obj of the abstract parent class cannot be directly instantiated... has

to be a specific "type" (subclass) of itself.

What is an abstract method? A method that is defined in the parent class (so that any
Parent Class object can access if... BUT

it has no implementation (method body) that defines what it does
.
The method needs to be

overridden & specifically defined by every subclass of the parent.

· As opposed a concrete parent class
,
where every method is implemented

,
but subclasses

can still choose to overside them.

Why would you opt to use an > If there is no sensible implementation at the parent class level
,

BUT it does make sense for every instance

abstract method ? of the superclass to have access to the method
.

(e
.g.

Person avi= new Student "avi" ; is still a Person object.

->For e a Person parent class has Student
,

Professor
, Adjunct ,

Researcher
,

& Counselor

subclasses. A getStatus() method makes sense for every subclass (eg the position that they hold

as a student or employee) , but it doesn't make any sense for the parent class (a "Person"

doesn't have a status
, y K)

· Therefore
,

we mark getStatus) as abstract within the parent class so that we don't have to

define it there
...

& each subclass is then required to define its own implementation.

at all
,
if it has to be abstract ? I There can still be other regular methods that make subclassing useful .

OK so why even use a parent class/inheritance -> Remember
, parent classes are defined as abstract even if just I method is abstract...

-> The purpose of the parent class is to gather all common properties in I place for convenience;
It defines everything that an object of that class should be (including all objects of its

subclasses).

What is a concrete class ? - Classes that can be directly constructed because nothing is missing.

public abstract class Person E · · effectively declares Person as an abstract class
, meaning

Syntax for marking abstrack private int status ; that plain Person objects can NOT be constructed ;

fields& methods ? public Person (String name) [
...

3 Person jane = new Person ("jane"); - ERROR-

public String get Name() 3 . . . 3

public abstract String get Status) ; · Unlike the other methods
,
this abstrack

one has no curly brackets with coded definition.

Can a class be marked abstract even -> Yes ! Sometimes we may want to mark a class as abstract even if it is fully defined.

if there are no abstract methods ?

Why mark a class "abstract" if -> If we want to forbid the creation of an object at parent class level
,

and force it to use

it is fully defined ? a subclass (even though all the parent class methods have reasonable implementations for

subclasses to inherit

-> Basically depends on your (the programmer's) intentions with the project/abstraction.

Dependency Injection
What is coupling ?

-> When the definition of one class has a line of code that references a different class by name,

it creates & enforces a dependence between the I classes.

· For& public Vehicle Impl (int radius
. String name) 5 · By calling for a new object

Wheel Impl front left = new Wheel Impl (radius) ; everytime a Vehicle Impl

Wheel Impl Wheel2 = new Wheel Impl (radius & 2) ;
object is constructed...

these I classes have formed

3 a dependency.

-> classes which reference each other by name cannot be used independently.

- The more dependent that a project's classes are with each other,
the harder they are

to separate- but this isn't ALWAYS a bad thing.

Sometimes classes don't need to be separated...

When is coupling okay to do ? -> Between classes which are in the same package ,
because they are always going to exist

tog
& recall the Java imports that you sometimes add to the top of ajavaFile (like Math,

ArrayList ,
HashMap

,
Scanner

,
etc... those are all packages of multiple class files

being imported together.

When is coupling more complicated ?- When we build larger systems that use multiple packages & packages start to depend on each other.

-> The best way to do cross-package couplings is at the level of the Interface

So that we don't make assumptions about implementation.

What is Dependency In

I ether

*

&

I
of the Wheel Impl class

· i
. C . having private Wheel frontleft ; as a private field in VehicleImpl .java isn't problematic on its own.

Loosely versus highly coupled code ? Highly Coupled Code LooselyCoupled Code

·

many named references between class files,
· separated into well-defined independent

even if they arent closely related. modules

-> Systems that are loosely coupled are easier to maintain, modify ,
read

,
& etc.

led class ? - · Injecting Wheel and Engine objectsExample of a highly coup
F

RECALL: referencing into the class through the constructorI theIn VehicleImp is lightly coupledthe

a specific implementation of the

Engine & Wheel Interfaces
· we can't make different choices about

what ind of wheel orind of engine

How do we design a composition (for ex
,
if we wanted to use some subclass

of Wheel (

that supports low-coupling? Dependency Injection !

ection ?- writing a composed class in such a way that allows us to inject which specific instance

of another class object to use ...
rather than the comp. class hard-coding this into the constructor.

-> An ob,ect/class cres other objects that it requires/depends on
,

as opposed to creating
them internally.

-> There are several ways to support DI.

What is one way to support DI ? -> Inject the other classes' objects into the composed class through setter methods

-> · Replace this ... with this :

public void set Engine (Enginee)
this engine = e ; 3

·

XI
public void setFrontLeft (Wheel #)

this
.
Front left = f ; 3

· - - and so on

-> This is known as setter injection .

What is another way to support DI ? -> constructor injection.

-> the depdencies are given to the class at the time of construction - as parameters

· Replace this ...
with this :

public Vehicle Impl (EngineImple,
Wheel Impl Fl

, Wheel Imp fr
,

Wheel Impl bl
,
Wheel Implbr)

... (constructor code)
... 3

-> You can also incorporate both setter & constructor injection .

How does DIchange a class + The class is still considered a composition in terms of object design ; the objects being injected
status as a "composition ? into the class are still its "internal components"-

· they are specific to this instance of the class & not used in other instances of the class

Le. g .
a distinct

, different Wheel Impl object goes into each instance of Vehicle Impl (
· They don't make sense outside of the larger concept of the composed class.

-> But by supporting DI
, it does start to look more like an aggregation

What is the difference between DI in DI in composition DI in aggregation

compositions versus aggregations ?
· have to make an active choice land write · aggregations already basically support DI

diff code)to support DI by design &definition... a built-in feature

·

sort of gues against a composed class' nature ; of an aggregated abstraction.

exposing our 'internal organs' slightly more than

we would want to.

Bottom Line : What are the pros Advantages Disadvantages

and cons of dependency injection ?
-> Makes objects more configurable -

more -> Requires more code to construct a new object (like in

true to the idea of "programming to the interface"
the Main .java class)

,
and user needs to know about

-> Easier to write isolated unit tests
all of those dependencies being injected.

-> promotes loose coupling of classes
-> Requires more development effort

-> Goes against "convention over configuration"

Inversion of Control

What is "traditional" control flow ?
-

> We start execution in the mains) method
,

& we write everything else straight after - aka just the sensical

intuitive "Flow" of writing a program.

-> Since we wrote the first procedure on the stack frame , we have full control over the execution of the

program

What is inversion of control ? - Sometimes a program is split up into 2 parts (perhaps I pieces written by 2 independent, separate

developers)... 1 of these programs
-> Basically , imagine we have developed a piece of software that still has some missing

components / can be made more specific by a missing ingredient
-> And now imagine there is another separate piece of software (for ex

,something created

-> When we are executing the flow of our program,
there are key moments where we need to

rely on the other software's components in order to fill in the missing answers in our algorithm

...
when we call that other component ,

we are effectively ceding control to that
program

(20C)

I -> by a different developer) which mains these 'missing components'

And vice-versa ; if my program is that other component
,

I'm in a situation where I don't get to control

the execution flow ;
- someone else decides When to call my methods & I am only allowed to respond to those

method calls

- Execution jumps in& out of my methods

-> This relationship between the I components is called Inversion of control

· basically
,

we as the programmer don't always get to control top-lever execution.

-> Io C is a common

programming pattern for frameworks .

& for ex
,

think of a user interface with buttons & the code/software that
we

performs the actions after the button gets clicked.

ection -> DWhat does Dependency In I is considered a form of IoC

have to do with IoC ? -> D& is a useful paradigm for programs that use Io

Example of IoC ? -> Array sorting with the Java collections Framework

B

ArrayList has a sorting method which takes a comparator' interface as a parameter

ArrayList<int list = new ArrayList < () ;

list
. Sort (comparator c) ;

· the comparator interface contains a method to order the objects (but since its an interface we can

overside the method to create any t that we want-like merge sort
,
bubble sort et

· the sort() method is written entirely who any knowledge about what the sorting algorithm will

look like-sort() doesn't care about that
,
its only goal is to present a sorted list of an ArrayList object

and provide generic code to do that.

· But when Sort() is actually called
, at some point there is that critical moment where it needs

to retrieve the elements in sorted order - at that point, the comparator object is injected

into that method and control is 'inverted to the comparator.

-> The relationship between sort) and comparator is an example of Io2 .

Are private members inherited by a subclass ?

Yes !

define "inheritance" as ? the code in a subclass

-> Therefore, Oracle says that private members aren't inherited by a subclass

· However
, in this class

,
we regard this conclusion as inaccurate

What does the internet (Oracle) I -> to mean whether or not the private fields & methods of a parent class are accessible by

How do we define "inheritance" in
-> to mean whether or not the private fields & methods of a parent class are part of the

this course ? subclass object created in memory
· Therefore, we answer the given question as YES !

Notes : Midterm Review Session = terminology = Key point

- Git Stuff -

What is build automation ? -> The process of converting your source material into a product that you can actually
give to consumers

- creates a shippable software product
-> The 'build process is what does this.

What do build automation tools
-> They automate the entire build process for you

do ? -> Our build automation tool : Maven

a POM File ? -> The main project file that
you use in a Maven project ; the configuration file.

-> written in xm1 & is typically placed in the root of the project folder
.

-> specifies various settings for the project
a Dependency ?

-> Any package or 324 party library that your project uses

an Archetype ?
-> The template used for creating a new (Maven) project.

an Artifact? The final end-product that Maven gives you
-

e . g- the packaged output file that is produced at the end by a project.
the Life Cycle ! -> A configurable build process task ; All of the tasks that Maren is automating

(i . e . the "build tasks")

What does git checkout do ? - A command typed in the terminal that changes which branch we are currently working on

What is ...

I -> git checkout (name of desired branch)
* saystouseeus" but idt that's right??

Le .g . the branch that will move forward with each commit
review ppt

-
How do we update our code on github 2) git add

.
(adds all files to new commit) OR git add "[filename]" "[filename]"

from the terminal ? 2) git push origin master (send sude to version control Conly add specific files)

3) git commit-m "(note provided for commit)"

How do we get updates (new commits) from 21) git pull Igets must recent updates from version control

github that others have committed ? I git merge (merges those changes with our local changes

(only use if changes are conflicting

- Access Modifiers -

-> keywords that control the visibility & accessibility of methods
,
variables

,

& fields in a class.

What is private ?
->

member only accessible inside class body

What is default ?
-> member accessible from anywhere inside the package

· packages example : all of the files & code in our assignments so far has been in one

specific package.

What is protected ? -> member can only be accessed within parent class & its subclasses.

What is public ? -> member can be accessed by anyone

- Anatomy of a class-

instance fields ? -> the variables which define the attributes of the class

class fields ? -> the static versions of these fields

constructor ? -> How you create & initialize an instance of the class

Instance methods ? -> the functions used to fill the fields or perform actions related to each instance

of the class.S Class methods ? - Static version of instance methods - defines a method; isn't associated with

S
any particular instance

What are "class members" ? -> the methods & fields of a class
. But NOT the constructor.

· have to be defined by the Static Keyword... Otherwise its an instance

Field/method (member

What aree...

I
outside a class

.

- Encapsulation Principles -

What is encapsulation ?- pillar of Gop

-> combining data (i
.e. attributes & fields) and methods all together into one

class (bundling data with the operations performed on that data .

" (

-> Used for hiding the representation of an object from anywhere outside the class.

What is the 1st principle of -> Do not expose the internal state of an object directly- eg declare private fields

encapsulation ?
·

protects instance fields from being accidentally changed
·

Allows internal mode to be refactored wo breaking external code.

·

essentially separating what you do inside a class from what you do

2nd principle ? - Separate exposed behavior from internal behavior
.

How do we support encapsulation ? · Mark all instance fields private
· Initialize instance fields in the public constructor

·

getterf setter methods

!"

Midterm 1 Study Guide

#nit1 :Java

VSInterpretedlanguages

.There is
apildlagraecompiler· contain built in language interpreter

that parges
& interpret, sic code

that parses+ translates suc code into

for execution machine-executable code

·

same suc zode can run on diff lower-level ; speaks directly to machine

platforms & processors
·

runs faster
,
can be highly optimized V

·

runs slower than compiled XX
· machine-specific versions of the code

· Ex : Python ,
Javascript

needed for every kind of processor

(not universal) XX

· Ex : G
,

C ++, Rust

-> Java : Best of Both Worlds

source

code"Dopm binarybytecode Main S ->
code

S

C.java File] (. class File
executed

(not machine-specific)

(non-executable) (diff .

versions exist for diff.

- machines ; machine-specific
z I

Compiling V
↑

Executing
Executing large projects

-> Dependency : 31" party library (like JavaFX or JUnit) of code used

in our project

-> At runtime
,
all dependency & source zode files get compiled/packaged

into 1· jar file (a bunch of class (bytecode] Files archived into one .)

Unit 2 : Object-Oriented Programming
-> flips the relationship between input& the functions performed on it

.

-> Keyword this :

->

collecting data together as an abstraction so that we can work us that Keyword inside constructor that points to new object to be initialized

data (ie like the main class) who having to know the specifics of how
·

a memory pointer/reference to the memory space that Java Set aside

that data is maintained
, interpreted ,

& used.
- Much easier for the new object (when the new Keyword was used to invoke the constructor .)

-> Abstraction : provides a means to invoke "behavior" & save objects tells computer where to send the data that was passed in through the class fields.

of the class type.
·

If class field names DO NOT OVERLAP with the names of any local

Steps to 00 P parameters or variables in the constructor/methodss ... then "this" can be
avaCircleyO name the abstrac

-

tion I public class Circle & ommitted.

2 >O declare its fields : private double radius ; static methods⑮ instance methods

· "private" bl of encapsulation private int centery ; · general , public methods ·

only make sense when called through
· NOT inside any method private int centery ; ·

not instance - specific I a particular instance

& define a constructor : public Circle (int center X
,
int center y

,
double radius)E · referenced through the Class · referenced through the instance

this. Center X = center X ; name that they are in; objects name ;

this Center Y = center Y ; double side_ab : Frank.

portDist Triangle testTri = new Triangl,is
this. radius = radius ; 3 (...) ; namo

t

double
arestrigArliun method

static method's
instance of⑧Define instance methods ; public double get Area () E parameter arguments

object instance method

·

execute instructions to return return (thisradius 2); -> see "Anatomy of a Class" section of the review session notes .

a value or behavior based on
-

3 Unit 2 : Encapsulationinfo from the fields
.

· called using reference Obj. method() ; -> first see "Encapsulation Principles" section of the review session notes
.

->

memory : Whenever we run a line of code invoking a constructor,
->

getters :
public method used to retrieve value/data from a

Java will set aside the amt of memory needed to store class'private) field . Protection
it - in the heap

· Users can access data Wo having direct access to the class fields.

& After doing this
,
Java actually starts the constructor.

· ALWAYS use them
,
even if you are making your fields public for

->"Static" : non-object-oriented ; global & can be called by anybody
some reason.

-> class members : the methods & fields of a class . But NOT the constructor
-> getter trick-derived fields : an imaginary "field" (in that it is

· They define values & helper methods assoc
.

W) the class as a whole. a data value that's relevant to your abstraction) that is myjust
· have to be defined by theStatic Keyword... Otherwise

a calculation or transformation of other fields
.

its an instance field/method (member · don't declare it as a class field or ask for it in the constructor args ;
· constant values·

-> object : Each object is an instance of the class
,

& the object instead
, just write a getter method for the "Field" & perform the calculation

#pe is the name of the class (eg a Circle object) directly inside the method.

-> Keyword Final on a
...

->Letters : public method that sets +updates a field ;

· method-method cannot be overridden by a subclass public void set Length (int length; thislength = length ; 3

· field-value of field/variable(not be changed after the constructor -> setter validation: throwing an exception (in an if-statement) if the user tries

instantiates them to set a field to an improper value (for ex
,
a negative int for a "length" field

.)
· class-class not be extended (have subclasses

Unit 2 : Interfaces -> Inheritance with Interfaces

-> ADT that provides a list of methods that
any implementing class is

10
provides method signatures for its parent Interface AND "grandparent"

promising to provide a coded implementation for-sort of a contract.
Interfaces

-

->
Publicly declared

,
AND implementing classes must declare all impl methods as public. Often used for picking a few methods across several Interfaces and pulling

->
several classes can implement I interface AND a classan implement multiple

them all together

*

interfaces

-> Only 2 other things allowed inside Interfaces :

O
static methods (since they don't need a specific instance's data to be implemented.

②
default methods - instance methods that can be implemented entirely using

other methods of the interface (and no fields)
.

EX : return get(x) - otherget (x) ;

& ·

Implementing classes have choice to use the default method or define their own impl !

-> programming to the Interface : Store objects as the Interface type e . g.

Yarn legwarmer = new Yarn Impl

-> Encapsulation : separating an abstraction into 2 parts :

2) Interfaces 2) classes

Unit 3 : Inheritance

->

superclass : regular class (in terms of codel

-> subclasses : extend the superclass (inherit all of its methods & Fields)

· They can also add their own extra fields/methods.

· subclasses automatically contain all superclass members once we use "extends"

· subclass constructor : use super (...) as I line of constructor to essentially

"call" the parent a constructor (as if it were a method)

-inside parentheses : same parameter args that are required by pa constructor.

PublicPerson(strigname(public Student (string namea

Super (name1) ; 3

-> subclasses in memory: both references point to the same memory address in heap :

Person avi = new Student ("avi") ;
AND Student ari : new Student ("avi") ;

(this is ex of subtype polymorphism)

-> What difference does it make in the reference used to declare a subclass object?

·

user only has access to the methods defined for an objects declaredtype

Jaka the reference) - Person avi = new Student (avi") is declared as a

Person type& thus can't access any methods that are specific to Studentjava

& 2x Object avi = new Student ("avi") can ONLY access the Object class

"equals" and "tostring" methods
.

-> Multiple inheritance : when a class extends more than 1 parent class

NOT allowed for classes
,but Is allowed for Interfaces

Unit 6: Error Hanbling
-> software controls hardware

,
& mistakes in computer software can be dangerous .

What is an exception ? ->
an unexpected

,
unusual

,
or abnormal situation which arises during execution of a program.

-> some can be anticipated by the programmer & thus dealt with by the program Ce.g . writing code to

"throw" exceptions)... other times
, they can cause the program to crash .

D
- History :

early error handling strategies-

What is a "global error code"? A global variable (e .g . public and static) that has its own special spot in memory ,
and where an "error code"

is stored to indicate if something has gone wrong

-> For ex
, declaring this at the top of a class :

public static int error-code ;

How do we use that variable? Whenever something goes wrong ,
we have code that changes error-code to some other numerical code.

& Prior to this
, programmer has to know/define a list of errors & the codes that correspond to them.

to see if it is still = 0 (indicating no error)
,

or if it has changed to a diff value.

->1What are the issues with global ↓ is on the programmer to know all of these codes & what they mean.I -> Any time the code/program does something where an errorold occur
,
we have to check the error variable

error codes as an error handlingstrategy ?
- 11 is on the programmer to remember to write code checking for an error at any place where one could occur.

· Otherwise
,

the program could just continue on unaffected
, causing bigger issues to arise later.

-> Have to clear out' the variable's value everytime after an error has been handled.

②
->

Only I variable ; if a second error occurs while the 1st one is being handled
,

there is nowhere to store its code.

What is a"special return value ? -> if a function returns some out-of-range value that it should not have produced ,
then there is a designated

special return value that is meant to be interpreted as an error.

How do these work with void methods ? - All methods that we would normally declare as void (because they are procedural & don't need to return

thing) would instead not be void functions & would return a number indicating the error status.any

·For EX
,

O = success
,

<O indicates error
...

& different neg. values correspond to diff errors (as documented).

How do these work with normal methods ? -> For 2X
,
if the wrong reference type is (attemptedly) returned

,
have the program return full in order to

signal an error.

-> For &X
,

if an incorrect value is returned
,

use an out-of-bounds value to indicate an error.

- Java's indexOf)) method in the String class.

What are the drawbacks to these early -> 3 n consistenta convention-based

error handling strategies ?
-> Methods must have out-of-range values to use for indicating that an error occurred.

-> Relies on documentation (created by the program's creator) to explain what each error means-

D And this documentation needs to be well understood by any other programmer using this program .

-> The
programmer is responsible for remembering to check for errors.

-> Difficult to extend in future development

·

eg & including different errors not initially coded into the solution
,

new features providing info about errors
,

etc.

Exceptions - the modern error handling strategy'

What is exception handling?
-> A formal method for detecting

, signaling ,
& responding to errors.

-> Every programming language (except C blc its the oldest) provides a built-in mechanism for exception

What are the benefits of exceptions?
1 . Consistent

,
extensible

,
modular

2. Expressive ; can express exactly what type of error occurred
,
and can encapsulate details about the error;

· the line of code where the error occurred
,

what type of error
,

etc.

3. Dependable ,
obvious behavior :

· if an error occurs
,
the programmer knows about it & can decide whether to handle it.

↑ Safe :

·

programmer can designate certain pieces of the code as being critical
,

and have thisLode run & execute

no matter what
,

even if an error occurs

- built-in exception handling allows us to do this.

So what exactly do "exceptions" look -> They are represented by objects !

like in Java ? ->

Every specific type of error gets its own "exception" object typeCaka "class'

· these objects use encapsulation to store details about the instance - specific error that just occurred.

· they also use inheritance to classify the kind of error that occurred .

Do we create these excep I
handling.

runtimeStir

&

tion objects -> Yes
, for our specific needs we can create new exception classes.

ourselves ? -> BUT ! Java also provides built-in exception classes for common errors

· for ex
, Illegal ArgumentException ,

File NotFoundException ,
IOException

What else does Java provide
?- The inheritance (parent & sub-classing) framework for all exception classes.

-> There are various subclasses & sub subclasses used to classify errors in Java

What is at the top of the exception class
-> The Throwable class - the parent class to all exception/error object classes

.

hierarchy ? ·

Any new exception object we make must also inherit/extendThrowable

Example of some of Java's built-in Throwable

a q

classes ? Error Exception

↑- Arithmetic Exception

- Illegal ArgumentException

What are the 2 parts of exception handling? - throwing and catching

What is "throwing" ? -

>thedetectionaspectoferrhandlingsignaling
that something has gone wonthe

What is "catching" I

- Throwing an exception-

What is the syntax ? -> use the throw Keyword ;

throw new (name of exception class] (encapsulated values specific to exception) ;

throw new Illegal Argument Exception ("null value provided .") ;
-> usually ,

the exception object is created at the time that it's being thrown
.

Chence the new Keyword) .

What happens when an exception
-> As soon as the line of code with the throw okurs

,
the method stops executing.

is thrown ? -> We start "unwinding the stack" and looking for the handling mechanism to deal with the know detected

error - aka looking to see if the current method is inside a try-block.

-> One of 2 things will happen next :

af
the program 'unwinds' & finds the 'catch' method which then handles the error ; program continues

to run & user isn't even necessarily aware that an error occurred.

by
the program 'unwinds' (past the current method and] all the way back to Main .java (where the current method

was initially called) ...
if error still isn't handled

,
the program stops/crashes & gives the user an error message.

How is this method safer than earlier -> exceptions force the issue by thing an exception & threatening to stop the program if the error isnot

error-handling strategies ? handled.

- Cat tion-ching an excep

What does "catching" entail ? -> writing / providing the crde to handle an error/exception.

What are the I parts of the "catching ⑫ try blocks

What is a try block ? -> A block of code (indicated by the 'try' Keyword and a block in curly brackets) where we write the

code that has the possibility of throwing an exception .

·For example , calling the methods of the program which contain throw statements.

try &
method B1) ;

3
-> When an exception is thrown in a method

,
the first thing the program does while unwinding is look to

code ? I ② catch blocks

11 code to respond to this other ExceptionType 3

see if the method (as a whole) is inside of a try-block.

-> Once the computer finds the method inside a try-block
, "unwinding" stops & we immediately

go down to the first catch block.

What is a catch block ? ->
a block of code (indicated by the catch keyword and a block in curly brackets) that contains the

actual code for handling a given exception .

-> There are lusually) several catch blocks -

a single catch block corresponds to a single type (class) of exception on.

-> FORMA T : Catch /ExceptionType e) E

1 code to respond to this specific ExceptionType 3

catch (OtherException Type F)E

What is the call stack ? -> where the program keeps track of all activeAndcalls & the order

-> imagine the methods getWeight() , getTitle ()
,

and printDescription() in a yarn inventory program.

·
public String get Title() E

return this name + this. getWeight().

to String() ; 3

o public void print Description () &

System.out printin ("The title of this yarn is
"

+ yarnObjgeTite()) ; 3

-> Now in the Main - java file
, imagine we have created a new Yarn and run the following line of code :

my New Yarn . printDescription() ;

·Main is calling printDescription() which
,
in its code ,

calls getTitle 2)

·

get Title() then calls getWeight()

·

get Weight() calls toString()

-> As these methods are being called , the call stack gets populated & then depopulated ...
until getstring() is Fully

executed
,

the rest of the methods are still "open" because they haven't been fully executed... during this time,

the call stack might look like this (abstractedly) :

print Description

getTitle

getWeight

to string

->
...

so for the purpose of understanding exception handling ,
we can basically think of call stack as a

list of active method calls (stored somewhere in
memory).

What are the steps that occur (in- Take this example ... imagine that method Al)
,

method BC)
,
and method()) all contain throw statements.

the executer) When an exception is 1
. methodA)) is called by main

, everything goes smoothly
,

try &
thrown ? no exceptions thrown . method All ;

2. MethodB() is called by main & an exception gets thrown. method BL) ;

Once the exception is thrown
,

method .)) immediately stops 3
.

method (1) ;

executing.
6. 3 catch (Exception Type1 e) E

3. method (1) will never be executed because the exception occurred up 1...)3

in methodBL) - even if /after the error is handled ! Catch (ExceptionType[f) S

4. Now we are rewinding the call stack & searching for where (...) 3

method BC) was called & if it was called inside a try-block.

5. Since we found the current method (method2) to be inside try-block ,
we now immediately jump down to

the first catch block.

Sa
.

Of methodBL) hadn't been inside a tryblock : call stack unwinds to the previous method that called methodBL)

in the first place ...
it stops the execution of this method & again searches for a try block

I

· This process continues to happen-moving up levels - until a tryblock is found.

6. Check to see if there is an is-a relationship between the exception that was thrown & the exception

being declared in this catch box. If there is
,
then the code inside this calch block is executed.

-> catch blocks are similar to if-else statements - once we find a match
,
we ONLY execute that block. The succeeding

blocks don't even get looked at

6a
.

If there isn't an is - a relationship
,

we more on to the next catch block
, & so on.

What do you mean by is - a relationship -> Remember that exceptions are objects ! Recall the Java exception class heirarchy...

in regards to exceptions ?
·The exception being thrown might be a hyper-specific subclass of a broader category (parent class) of

exceptions... The catch block could refer to a parent exception type & not necessarily the specific subclass type.

Example ? methodD()E

↓ program
throw new Illegal Argument Exception ("IoI . "S ;

method

3

try E methodD() ; 3 error (also located in main)

handling
Catch (Runtime Exception e) E ↑ code

1 ...) 3

-> Illegal Argument Exception is - a (is a subclass of) Runtimexception

-> Ask this: is (exception being thrown] is - a [exception type declared in catch block) ?

What if none of the calch blocks -> After
looking at all of the catch blocks corresponding to the current try-block without finding

match the exception type ? a match in object type ,
then we continue back to "unwinding the stack" and looking for try blocks

in the method calls that preceded the current one.

-> A
.
K . a

., we are "re-throwing the exception".

-> If we never find a match :

program dies,error message displayed on screen
.

-> Wait .. everything in the try block gets executed ?? "

When does the order of catch blocks -> If a catch-block for a certain exception "A" is placed fer a catch-block for an exception

matter ? type that is a parent class "B" of "A"
,

then this is bad because the "A"catch block will never

↳ ala

be executed! "A extends B"

immediately
·

all thrown exceptions of class "A" will " enter into the catch block for "B"
,

which wasn't our intention

·

the compiler can notice & inform us of these errors .

&

Where do we code try- & catch-blocks? - the same program where the methods are being called ! For instance
,

in Main .java .

· they don't exist in a separate file... the concept is basically that everytime you are writing code that calls a method that

contains a throw statement, you want to call that method inside of a try-block rather than just on its

own (like we've been doing so far)
... so that we can specify a response to the "throw

.

"

- COMPARE

public static void main (StringL] args) & ⑮ public static void main (String] args) E

int num = yarn1 . get Weight() ; try E int num = yarn1 . getWeight) ;

3 3

catch (ExceptionType e)E

/ some specified action 3 .

-> both of these files are attempting to do the same thing-declare int "num" as "yarn].get Weight" ..

but if the getWeight)) method contains a throw statement
, we should be following the 2nd format·

*Note : we are only talking about unchecked exceptions this far

- the "finally" block-

What is a "finally" block ? > block of code indicated by the finally Keyword & curly brackets

-> place this at the end of the sequence of try-and catch-blocks .

What is the purpose of the
finally E... 3

finally block ?
-> a place for code that needs to be executed no matter what - whether or not exceptions are thrown

,

Whether or not they are handled.

->

goes back to the idea of critical code - code that should run no matter what
-

How do we create our own
->

simply create a class that extends from one of the built-in Java exception classes.

exception types ?
-> Ex ample :

the

exception [public
class Not Cool Enough Exception extends RuntimeException &

class
...

3

throwing if (numc = 10) &

the I
exception throw new NotCoolEnoughException () ; 3

->tSummary of terms ? Grow : used to throw an exception object
- trylcatch : used to safely run code that might throw an exception.

-> catch : blocks similar to if-else statements ; need to be ordered from most

to least specific object type
-> finaIly

: used for code that must always execute

·

usually used for cleaning up& closing system resources.

What are some "best practices" 1 . Throw exceptions early ... as soon as you detect a

wrong value

with exceptions ?
· this is defensive programmingI 3. Ca

·

Don't catch an exception unless you know how to deal with the situation

2 . Be specific when throwing an exception

·

try to use a built-in type but don't be afraid to make your own to describe a situation.

tch exceptions late

· Just bk you can catch an exception doesn't mean you should

· Instead
,
let the exception "bubble up" to a level of the

program where it will actually make sense.

Why should we "catch" exceptions
-> You don't want to catch an exception just for the purpose of catching it - want to

as late as possible ? catch it because we actually have some programmatic way to deal with it

· this usually isn't going to be at the same point where the exception occurred
,

and

instead will be at a much higher level in your program.

· therefore
, you should let the exception unwind the stack until a point where its

reasonable to catch the exception.
-> If an exception is thrown at a point where you wouldn't know what it means in respect to the larger

program, then that's probably NOT the right place to catch it.

-> checked versus unchecked exceptions-
1 -

throwable

What is Java's built-in class iception"
(in more detail) I I 5 .

ClassNot commo Runtime
2.Exception Found Exception SupposedEx Exception

·- EOFException &~ithm

1
.

"ITrowable" is the superclass of all exception objects
2 . "Error" represents externally caused

,
unrecoverable problems that should generally not be

Caught or handled.

heirarchy for exceptions ?

I
&

.

A

land so on

2-

*

*

land so on

3 . "Excep tion" is the superclass for errors caused by the
program

itself
,
which may be caught& handled

if appropriate .

6. checked exceptions - "Exception"& all of its descendants EXCEPT RuntimeException

5.
unchecked exceptions - "Runtime Exception" and all of its descendants

What are tions ? -> Excepunchecked excep tions for situations that are usually caused by factors inside the program's control

& For ex
, they might indicate logic errors or an unexpected variable value.

-> These are for errors that really "never should have happened"
,

e . g.
the fault of the program

/programmer
-> We should only useun checked exceptions to handle these types of errors if we know how to fix

the situation .

What are checked exceptions ? -> Exceptions for errors that are usually caused by factors outside of the program's control :

·

They may occur even during "normal" operating conditions.

Errors that
may

indicate an unexpected system state.

-> They are for errors that your program should probably anticipatea be able to respond to

What is the main difference between- hecked exceptions are subject to the "catch or specify" rule ! (unchecked exceptions aren't

?
- The dischecked & unchecked exceptions finction between unchecked & checked is a Java-specific feature

,
& was created to account for

"programmers being lazy" & not checking for external errors when they should be.

Where do we throw and catch -> Inside of the method itself !

checked exceptions Y -> As opposed to unchecked exceptions ,
which are thrown inside the method BUT caught & handled in

the "main" file where their respective methods are actually being called

&

aka what we just learned (see previous pages)

What is the "catch or specify"

I
-> The format that all checked exceptions must follow

rule ? -> If a method contains code that might throw a checked exception
,
then the method

must do de of the two :

② Catch the exception internally
#
②

specify that the checked exception might be thrown

by the method-this is done in the method signature

memory tool for remembering
-> "unchecked exception" = didn't check for'account for errors yet = try & catch in the main file, as

"

checked" versus "unchecked" ? We are calling the methods.

-> "checked exception" = already 'checked for errors by the time we get to main file = catch & specify in

the method itself so we can consider it already checked

Why do we follow the "catch or
-> It is defensive programming

- forces the programmer
to address the situation.

specify"rule ? -> Even though checked exception errors are out of our control
, its better if our program

defines a strategy for dealing with those situations.

When to catch versus when to -> If the current method is the correct place to deal with the error
,

and we know how to deal with

specify an exception? the error at this level
... Catch the exception.

-> If this current method isn't the appropriate place to deal with the error
,

needs to be dealt with at a

higher level
, (RECALL the principles of throwing ... specify the exception.

·

specifying an exception is basically a way to
anyone who calls the given method that they

are going to have to deal with the error themself
,

if it occurs.

↑
s = new Scanner (f) ; > try - and catch-blocks

, just like with

example of catching a checked -> The class with the method that has potential for errors :

exception? public Scanner open File (String Filename) [even though there isn't an explicit throw statement

File F = new File (filename) ; a > anywhere (like with unchecked exceptions) , there

are exception throws built into Java's "Scanner"
Scanner s = null ;

class (you can see this in the "Scanner' documentation).

try 5.

3 Catch (File NotFoundException e)So unchecked exceptions.

e . print StackTrace() ;

3 return s ; 3

example of specifying a

public Scanner open File (String Filename)
throws FileNotFoundExceptiono

checked exception ?
File F = new File (Filename) ;

Scanner = new Scanner (f) ; ·

the method signature Cake the line where a new

returns ; 3
method is created) is specifying that this

methodlight throw a "FileNotFound" exception

What happens (to the prog as a whole) -> If we simply specify an exception in a method & don't do anything else
,
an error will occur when the

when an exception is specified ? method is called !! Because we haven't handled it anywhere !

- This is known as a "catch or specify error"

So then what else do we have to -> In the main class where the method that calls the method w/ the 'specified exception;either :

do ? ② handle the exception by calling the method in a try block :

(continuation
of 24

Main java
on previous

&
page public static void main (String [Jargs)E

try & open File (ariFile) ; 3o · calling the method that specified an exception

Catch (FileNot FoundException e) E

// code to handle error

3 ⑳
⑥ have the current (main) method ALSO declare/specify that it could throw an exception (essentially

instructing the error to continue "bubbling up" :

Main java

public static void main (String[Jargs) throws FileNotFoundException &
throwing exception in main

method signature ,
so try katche

· Open File (aviFile) ;

blocks not needed 3

What are compile-time errors ?

↑
-> errors that are caught before you run the code-for ex

,
IntelliJ will give you red underlines in your code.

At what point are catch-or-specify
-> At compile time

...

If
you call a method with a specified exception & don't write any code to accomodate

errors caught ? this
, your compiler won't let

you run the code.

- Compile-time V . S. Run-time errors-

run-time ?

Y

↑
anything is wrong.

code to find them.

-> Essentially because the compiler can't read/understand your code

What types of errors occur at -> Syntax errors ; unbalanced brackets
, missing return statements

, missing class

compile-time ? definition
,

etc.

-> Static Analysis-errors that can be identified simply based on the "static" text... don't need to run the

· unreachable code
,

"

Catch or specify"violations

What are run-time errors ?
-> IntelliJ might warn us

,
but usually you have to run the program to see. The compiler can't tell that

What types of errors occur at -> All exceptions ! e . g .; Throwable class objects - Error
,

Exception
,
and all of

its subclasses.

key difference between the two ? Compile-time errors indicate ...

something is incomplete about your program. Runtime errors indicate...

something is wrong with the logic of your

program
.

Unit Testing and JUnit

What are the N levels of
-> From lowest to highest level :

18
Unit Testing

-> Testing methods and classes in isolation. To ensure that that specific class is working correctly.
-> This step occurs during development.

28
Integration Testing -> Testing how new code integrates with existing modules.

professional software testing ?

I ->
occurs during development

-> "Does my new code break my existing code ?
"

3)
System Testing -> Testing the entire system as a whole.

->
occurs after development

1)
Acceptance Testing -> Test in a production-like environment.

-> "Does my code work in realistic conditions ?
"

Testing it on different machines/computers etc.

-> As opposed to Systems Testing , which is in the "ideal environment" of just you computer.

-> occurs before release of a software.

What is test-driven development ? -> A principled approach to use when building smaller modules of code.

(TDD(
-> In the most extreme following of TDD

, you should write your tests even BEFORE
you

write your code.

What are the outlined steps of MDD? I Define the Write unit tests write code to
software s according to the

-> make the unit
requirements

requirements tests pass

-> In reality
,

all of these steps happen kind of simultaneously ... you go back and forth

- JUnit-

What is JUnit ? -> a library/framework (in Java) to help us write unit tests.

-> extremely well-known in the Java world.

What does JUnit provide
?

-

> Alibrary of assertion methods :

· these allow us to make statements (assertions) about what should be true at some point in your test

· the assertions will either confirm that
,
or will rue/raise some exception.

-> The &Test annotation :

·

a compiler directive for us to mark which methods inside a testclass are intended to act as individual

JUnit tests
.

· the assertion methods are what we use inside of these JUnit tests.

-> A user interface & other tools that provide the ability to automate testing
-> After

you run the test class : a report of which tests worked & which failed.

How do we access these JUnit -> we add JUnit as a dependency in Maven
,

and then we can add imports for JUnit features
,

such as :

features ? import org . junit .

Test ;

import static
org . junit . Assert -

assertTrue ;

I
program.

+c = test class pc = "program class" - the class which is being tested

What are test classes ? -> a separate set of classes where we test the classes we are writing for our

-> Conventionally ,
should have a separate test class for each class of the program.

What
goes in a test class ? -> One or more test methods which actually test the class - all of these are marked/

annotated by the &Test compiler directive.

& ·

every test method checks a single method
,

field
,

or constructor of the class being tested.

->

Optionally can also contain other stuff
, such as helper methods that might be used by your

test methods
...

but make sure to distinguish these by only addingtest to test methods.

Are test methods static ? - No . For JUnit to create its report ,
it creates an instance of the test class & then

calls each of the test methods & detects whether theywork or
throw an exception.

What do test methods look like
,
on

a general level ? either throws an exception,or it runs smoothly and just works

How does JUnit determine whether
Sommmmmm-> the return type is usually void

,
by JUnit just wants to know whether or not it will run wherror.

What does the body of a test method- usually we create an instance of the pc object & test a particular part of the pc,

generally look like ? comparing what we expect to happen
,
to what actually happenss ... this is where JUnit's

static assertion methods come in.

-> The static assertion methods (within the to methods) run smoothly if the expected output matches

the to method's output ...
and if not

, they raise an exception.

-> If the code throws an uncaught exception ,
the test fails

a test (method) passes ? -> If it doesn't
,
the test passes

How do we run unit tests ? - The JUnit dependency incorporates several JUnit tools & interfaces into the IDE (IntelliJ)
,

such as

·
a * button to run all the test methods in the to at once

· a button to run just one testI
·

a report of the results (pass or fail) returned to us in the console after every run.

- Writing a Unit Test -

So what code goes inside a unit test? - It depends on what you're trying to test
,

but a typical JUnit unit test does this :

1. create an instance of the pc

2
.

use some methods to change that instance's internal states or otherwise do something with it

3
. Use JUnit assertions to verify that the instance methods return the correct values.

What is assertTrue 1) ?
-> One of JUnit's assertion methods that takes in my condition as its parameter & checksto see

whether that condition equates to true ...
a very simple concept, but representing it in the form of one ofJunit's↑ assertion methods is how JUnit is able to derive results from tests.

-> if the condition inside the () is true
,
the test passes . If it is false

,
assertTrue)) throws an exception and the test fails.

assert True (condition statement (

I
"Inventory inv = new Inventory Impl)) ;

③
creating an instance of the program class (pc) in order to

What is an example of a unit test? - We have an Inventory Impl class that is supposed to start each instance of with a capacity (field

of O
...

so we are testing the constructor of Inventory Impl to make sure it does that :

1

OTest
②

the etest directive indicates that this is 1 of the test methods.

②
~ public void test Capacity (1E the test method is void ; doesn't need to return anything.

int capacitytest = inv
. getCapacity (1 ;

invoke the pc constructor (which is what we are testing

&
"

assertTrue (capacityTest == Ol ; calling one of pc's methods (getCapacity) ,
with an expectation

what

assert
True"

3 of what it should return already in mind.

"I want to assert this statement as being true" ; that the value of getCapacity retrieved from the new Inventory object i equal to

-> if the expression passed into assertTire is true
,
the JUnit test passes .

If not
,
it fails.

What are some of the other assertion method description

methods JUnit provides ? assert True (condition] throws are exception if condition is false

assert False (condition) throws are exception if condition is true

assert Equals (expected ,
actual) throws are exception if "actual" is not equal to "expected"

loses · equals) to check equality ,
ala CONTENT equality (

,

says ↑ ⑤ assert NotNvll (object) ↑ throws an exception if
object is null

assertNull (object)
throws an exception if

object is not full

assert Same (expected
,
actual throws are exception if objects are not the sameeference

(if "expected" and "actual" aren't the same object in memory ,
a ka

REFERENCE equality (

assert Not Same (unexpected ,
actual) throws an exception if inexpected" == "actual"

(if they are the same obj .

in memory

assert Array Equals (expected,actuals) throws an exception if the arrays donot contain the same

elements (using equals) aka CONTENT equality (

fail()
,

throws an exception to fail the test

When is the fail() method useful ? -> For more complicated tests+hat retrieve several different values... as soon as you get a

value that isn't what it should be
, you can assert fail) and end executive of the test method.

- Similar concept to if-statements that have return statements built into them
...

If the computer

falls to a line inside an if-block that says return [x] ;, it returns that value &ends execution

of the method
,
even if there are more lines of code below.

But couldn't we always just use
-Yes ,

if you wanted to
, you could always just buil your tests down to that

assert Truel) or assertFalse() ?
- however

, having higher level semantics associated with your assertions can be useful .

Why is it better to use more specific -> because the more semantically meaningful an assertion is
,

the more detailed the information

assertions when possible ? that JUnit reports to us will be - this is useful especially when a test fails.

->
use the most specific assertion possible because it describes the situation more fully.

-> Sometimes IntelliJ will even notice these potential improvements (in assertion method

choice) and suggest them to you.

EXAMPLE : What would be a better OTest -> in this case
,

assert Equals() is semantically more

stage of software development ?

I
2. Write unit tests ; *

comes to fixing our code &wreexpectingthea

assertion method for the testCapacity() public void test Capacity (1E meaningful than assertTrue))
...

If the test were to

method example (prev . page) ? Inventory inv = new Inventory Imple) ; Fail
,

JUnit would give us a much more useful report

int capacityTest = inv
. getCapacity () ; of what occurred :

assert Equals (0
, capacitytest); assertTre (capacityTest = = 0) ;

↑
3 &mething that was supposed vs

to be true was false
." asmtas10

, capacityTest);
more helpful/detailed when it. &

Unit Testing in Formal Software Development

I
What are the steps in the beginning 1

. Start with an algorithm specification

These 2 steps may
· code that runs through anticipated "normal" & happen in any order

situations as well as "abnormal" ledge) cases

3. Write an implementation;

· Implement the algorithm according to the specification

↓. Once the implementation passes the unit tests
, the code is ready for the next stage of the software life cycle.

What is an algorithm specification ?
-> The step where

you :

·

Design an interface with carefully chosen methods

· Discuss use cases with stakeholders

· Determine desired behavior for edge cases

· Make sure you clearly understand how the algorithm should work

· Walk through a few executions so everyone agrees on what should happen

-> This is the step where we write the documentation for the algorithm (via an interface
,
for↑ example... How do we expect the object and /or algorithm to work ? What do we want it to do ?

& !! - pro tip for coding interviews : never skip the algorithm specification Step ! Take ample time to

understand the algorithm

UnitTesting in Isolation

What is the goal of a singleunittest ? -> although each unit test should aim to test one aspect of a class
,

its hard to test a single

method completely in isolation.

-> try to isolate unit tests as much as possible ,
but its okay to call multiple

methods in a test

writing unit tests ?

↑
are options to help us be as correct as possible - 2 generalized "solutions" ;

-> solution : write multiple unit tests
.

How do we ensure correctness in
- It is impossible to write tests to verify our program works forey situation

,
but there

↳
What is "formal verification" ? -> Considering the algorithm from a mathematical perspective , tracing all execution paths

,
&

proving that the result is correct for every possible machine state.

-> This in I solution for ensuring correctness' that is more time-consuming but necessary for

critical applications

-> This approach is not going to be covered in COMP301.

*
What is the 22 solution/approach? -> Writing more unit tests !

·

writing a large number of unit tests for wide variety of cases in order to decrease the probability

that a bug exists - to below a 'reasonable' threshhold

- This is the preferred approach for low-stakes applications,
& what we will discuss below .

What is test
coverage ?

- refers to the number and variety of tests written for an algorithm to cover as many

expected and edge cases as possible.

How do we measure theoverage
-> JUnit has a test coverage

tool which helps you keep track of whichhow many lines of

of a test class ? code in the pc were actually executed (when the test class was run) .

High Test Coverage Low Test Coverage
->

many tests were written to test a variety > few tests written
,
all edge cases not

of expected& edge cases covered

-> tested as many possible diff situations -> few lines of pe code that get executed,

as we could think of aka lots of holes

-> maximum (ideally all) lines of code in the

pc are executed

=> = example-specific Stuff

Example: Envisioning aSoftware and Writing UnitTests

What is the prompt/task being "We need an get that represents an integer which can be increased or decreased by any

"We need to be able to test if the current number is prime or not .

"

What is the first step?
-> Algorithm specification ! First step is to design an interface

·

we need a way to add an int value to our object -

a void add Valve (int value) method

·

we need a way to test whether the object value is a prime number -

a boolean isPrime() method

-> Our defined
,
thus far unimplemented interface :

public interface Prime Counter & We have defined what it means to be a Prime Counter

void add Valve (int value) ; object

3

What is the next
,

second step ? -C options : Either we could start writing the PrimeCounter Impl class ...
or we can first work

given ?

I
amount

"

boolean isPrimel) ;

on creating unit tests for an imagined Prime Counter Impl class

-> the Test Driven Development approach says to begin by writing unit tests !

How do we write our first unit - start at the baseline
... Lets write a test to check...

test? · that we can create a new Prime Counter Impl object - alla that the constructor works without error

· that is Prime)) works without error

· that is Prime() is initially false.

-> RECALL : Follow the steps of a "typical JUnit test" :
"

create an instance of the class ;
2

call methods

to change the state ;
30 Use JUnit assertion methods to verify

.

public void PCITestO1)) & · throws exception if

Prime Counter pc = new PrimelovaterImp)() ; "pc.
is Prime))" = true

assertFalse (pc .

is Prime()) ; 3

How is writing unit tests a helpful -> it reveals to us missing /not fully thought out parts of our design that we should revisit
.

For ex
,
this

step in writing a class implementation? Is test already raises some questions about the design of our object :

fWhat is the initial value of our object? Does our constructor

need to ask for one from the user las a parameter)
-> While writing unit tests

,
we will often flip back & furth to the 'design' phase

,

as we are forced

to think more about the design of our object.

-> add to documentation : Prima Counter Impl object starts off with a value of 8

What should we consider for our next -> if a method gave the correct value in one test
,

how do we know that its actually working correctly,

unit test ? or just returning that same value for mmmstanceof the class ?

· next step : write a test that should return the opposite value of our first test of a given method.

What does our 2nd test look like ?

I
public void PCITestO2() & · throws exception if

-> Question : is is Primel) returning 'false for any value ? What if we test a value that is a prime number ?

Prime Counter pc = new PrimelovaterImp)() ; "pc . isPrime))" = False

pc .

addValue (11) ;

assertTrue (pc .

isPrime()) ; 3

What questions do we still have to -> Does Prime Counter Impl handle negative values ?

consider land write unit tests for) ? public void PCITestO3 1) &

Prime Counter pc = new PrimelovaterImp)() ;

pc .

addValue (-3) ;

assertFalse(pc .

isPrime()) ; 3

-> What if is Primel) is called multiple times ?

-> What if addValue() is called multiple times ?

public void PCITestON 1) &

Prime Counter pc = new PrimelovaterImp)() ; These statements are written based on↑ pc .

addValue (11) ; ·What we expect the value to be... eg

assertTrue (pc .

isPrime()); when PCImpl's value is 11
,
it is a

Pc .

addValve (3) ; prime number . When value is 11 + 3 = 1
,

assertFalse(pc . is Prime()) ; 30 it is not a prime number

Design Patterns

I
·

or you can use one as a template/starting point for your solution.

What is a design pattern ? -> A classic approach for solving a common problem that arises when writing code.

-> by learning about design patterns , you can recognize when a situation fits one
,

&

then know what the appropriate solution is.

-> the book "Gang of Four Design Patterns" describes common object-oriented design

patterns & breaks them into 3 categories : creational
,

structural
,

& behavioral

What are creational patterns ? -> patterns related to creating new objects

What are structural patterns ? -> patterns related to objects interacting with each other.

What are behavioral patterns ? -> common algorithms that are encountered in an 00 setting
What are the T design creational structural behavioral

patterns we will cover in this class ? · Abstract Factory
· Decorator · Iterator

·

Factory Method
· Observer

·

Singleton↑ thinking about a software/program as a whole.

-> As well as Model View Controller
,
which isn't in any of these categories but is used for

Iterator

I
V

↳ aka
a

What is iterator ? -> A design pattern that "provides a way to access the elements of an aggregate object

sequentially without exposing its underlying representation .

"

collection

ewant to sequentially access & loop through every element in a collection.

-> the pattern shouldn't have to deal with or know anything about what the collection actually

is or how it is being stored

·

Just that itis a collection .

"

What is a "collection" in
-> A group

of zero or more similar objects ; a set of items

·

Binary Tree ·

array
·

ArrayList

computer science ? ↑ -> collections are organized using data structures (210 !!)
... for example :

· Linked List ·

HashMap

What is the common operation for -> to loop through the items in the collection
,

one at a time.

looping through a collection ? > Forex
,

with an array :

for Linti = 0 ; i < arr
. length ; i + +) S

&tem item = arr 2i]

1)
. . . (do something with each item)

3

How is this operation different from-this for-loop is very array-specific. We need to know a lot about how this specific array
iterator ? object works :

· that the index starts at 0 ; the length property ; the usage of square brackets
,

etc.

-> we have to go through all of the collection's elements right here ; we can't loop through a few

elements & then go do something else & then come back & pick up where we left off

So what is the need that -> The operations/methods etc . to loop through each kind of data structure is different-

iterator intends to address ? the for-loop example above wouldn't work properly for a HashMap
,

for example.

- The need for data-structure - specific code for going through a collection

What other situations does iterator - huge collections with millions + of elements
,

where the data is too big to store in

pose a solution to ? memory (can't use an array
· 3x : users on Instagram

-> generative collections where we sort through a collection that creates items on demand

... basically where we are generating the collection while looping through it.

· there is no finite or initially set size of the collection

·

want to be able to loop through such a collection without needing to know the specifics

of how the generator works.

-> Bottom Line : iterator serves to be a way to loop through collections in general-adaptable

to almost any situation
.

Iterator object ?

I
· For a given collection

,
a class that encapsulates the details ofnow to loop through it.

What is the idea behind the
I

-> to be a level of interaction between the code that is using a collection
,

& the collection itself.

-> Yes ! that's the point .

It contains the details of the data structure
,

where the data is

So does the iterator object know the coming from
,

how it gets generated ,
etc.

details/specifics of the collection ?
-> because then

,
we can use this iterator object without having to understand any of the details.

->
we create a new Iterator class for every particular kind of collection

,
and it becomes

an object that we can use to go through the collection itself.

->We can ask it for some items & then go off and perform other actions & then come back

Why is this useful ? and keep asking it for new items - the Iterator object keeps track of where we are

in the collection
.

-> built-in language support for the iterator pattern & a library of interfaces &

What do most programming langs implementations for most of the common iterator situations

particular way that we want to go through it
,

we probably won't have to code

our own iterator & can just use one of Java's iterator classes.MWhat iterator classes does Java
-> 2 Interfaces : Iterator < T > and Iterable < T >

provide? -> Iterator support for all built-in collection data structures
,

such as List
,

Set
,

Map
,

etc.

each object (this is what we actually use to go through the elements)

· see the description of "the Iterator object" above .

-> The classes implementing Iterator <T are regular abstruction /object classes (like Alphabetizer) w) their

own purposes of existence - they just also implement iterator methods.

What does Iterable <+ > represent?
->

aecollection that is capable of creating & returning an Iterator object for its elements,

I on demand.

-> all of the Java collection types are iterable

I

The Iterator InterfaceI public interface Iterator < T > E

&

What does the interface look like ? -> Iterator > is a generic type interface (see page 37 of notes)
,
which means it takes a

datatype ,

T
,

as a parameter.

2

boolean hasNextLi ;

↑ next 2) ;
2

default void for Each Remaining (Consumer 1 ? super T> action)"
I

... 3

default void remove ()E

I... 33

What is the hasNext2) method. "
-

-> Answers the question : "are there still remaining items to check ?
"

-> throws a NoSuchElement Exception after all elements in the collection are seem .

RECALL : What does it mean when an interface - methods for which the Interface actually des provide a coded implementation. Every
has a method marked as default ? implementation class of the interface automatically contains that method

,
BUT the classes

what is the next1) method ?

↑
2

-> Returns the next item in the collection.

have the option to overwrite it& write their own implementation if they want to

What is for EachRemaining () ?
-
> A default method that isn't generally considered essential to the design pattern of an iterator

.

->

provides code that gets applied to every single element remaining in the collection.

-> not really focusing on this method in this course.

What is removed) ? -> A default method that isn't generally considered essential to the design pattern of an iterator
.

-> removes from the collection the last/most recent element that has been given by
next()

-> not really focusing on this method in this course.

- Using an iterator object -

2.

Start with a collection of items :
E

String[] data = new String[] E "Kappa"
,
"beta"

,
"alpha" 3 ;

2 .

Create the iterator : -> 2 ways to do it :

Iterator String) iterator = new Alphabetizer (data
* the class which implements Iterator <String) · the iterator object encapsulates the collection

·
even though the Alphabetizer class also has its own interface

,
we want to create this instance as

an Iterator type because in this case
, that's the interface that we are using it for.

OR

↑
-

methods I String str-iterator. next1) ;

Kappa

alpha

3. Use iterator's nextl) and hasNext2) While Literator
·
has Next() E

- OUTPUT : be ta

System .
out. printin (str) ; 3

How does the iterator loop differ from - All of the array (or other DS) specific details are now hidden. We don't need to know anything

an array for-loop (like previous ex) ? about where the data variables are coming from in order to sort them ; all we have to do is call

next and has Next

-> The code/class that wants to sort their data with iterator doesn't need to know anything about

how the collection works (i . e. the size of collection
, sorting method

,
ets .) - all of this is encapsulated

inside the iterator object.

What does the iterator pattern -> that the collection will not be modified while the iterator is actively being used.

assume about the collection ? -> Some iterator objects provide special methods like remove)) for safely modifying
the underlying collection.

- Designing an Iterator class -

What does the Iterator object need
-> track progress through the collection

to be able to do ? -> know which items have been seen
,

and which are coming up next

-> manage the order of the items Without modifying the underlying collection & its order

-> At the barc minimum
,

an iterator must a) have access to the collection
,

and b) have a

way to track which items have been seen

->Then are 3 different strategies for designing an iterator

Strategy 1- encapsulate the raw
- Encapsulate a direct reference to the original raw collection (in the Iterator objects

collection
· not making a copy of the original dataI·for ex

,
an index number associated with a certain element

·

or if our sorting method is more specialized (like with Alphabetizer
,
then the

cursor is keeping track of several different pieces of info in order to track where

we are in the collection.

-> Update the "cursor" field each time next2) is called.

Example of an Iterator object using
-> This implementation serves to return the elements of a string array in the order that they

strategy 1 ? are indexed in the array-
a super elementary sort just for the purposes of understanding

I
private String [] collection ;

Strate # 1 :

Strategy 1 :

public class StringSort implements Iterator String >E

private int cursor; · field for tracking collection progress

public StringSort (String [] collection)

this collection = collection;- encapsulating the reference to

this, cursor = 0 ; the original collection

3

Override↑- left to visit.

public boolean has Next() E using the cursor and the collection

return cursor< collection . length ; · length to Figure out if there are still item

I

&Override · The first thing that next)) should do

publicString next) [is call has Next)) ; if it is False
,
throw

if (as Next1) Soanew exception

String item = collection [cursor] ;

cursor + + ;
& ↑ · retrieve the item that the cursor currently

return item ; "points to"
,
and then increment the pointer

3 else E

throw new NoSuch Clement Exception)) ; 3

33

What are the advantages &
Advantages Drawbacks

drawbacks of Strategy 1 ? ->

Memory efficient since we
-> It's hard to change the order of the items

.

do not clone the collection.
· this strategy is pretty difficult to implement for iterators

that are sorting in more complex ways than simply index

order (like in this example).

-> There's no defined behavior for if the collection is

modified externally.
What is the sort) method ? ->

a static method of Java's Array class (can be used after implementing java .
util . Arrays; (

-> for a given int] or String(] array ,
the line

Arrays .
Sort (Iname of array]) ;

reorders the elements of the array either numerically or alphabetically.
Strategy 2 : encapsulate a clone -> Encapsulate a clone of the raw collection (in the constructor) .

of the raw collection- Sort or manipulate the cloned collection to make iteration easier.

·

now that we have our own copy
,

we can apply . sort)) to reorder it without changing
the 0 . g. collection

↑

I
private String [] collection ;

Example of iterator using -> follow the same remaining steps as in STRATEGY

Strategy 2 ?
public class StringSort implements Iterator String >E

private int cursor ;

public StringSort (String [] collection)

Arrays. sort (this collection) ;

this cursor = 0 ; 3

the rest of the class looks the same as the example from

strategy 1 !

What are the advantages and ↑ Advantages

this. collection = collection
.
Clone () ;

drawbacks of Strategy 2 ? ->

Changing the order of items in the cloned collection doesn't affect the original.

->

changing the order or number of items in the Og collection doesn't affect the iterator.

-> Convenient approach for iterators that would benefit from sorting the collection.

Disadvantages
->

extremely memory - inefficient because it requires a full copy of the collection.

· imagine really large collections
,
with like IM + elements

· this also means that if a user wanted to use an iterator just to retrieve

the First few elements of a collection
, you'd still have to applysort) to all

of them- which uses a lot of memory.
-

cannot work for infinite collections
.

Strategy 3 : encapsulate another> Useful for when you want to build a more complex iteration.

iterator -> Encapsulate another iterator of the raw collection :

· basically build the more complex iterator "on top of "existing simple iterators by calling the

simple iterator & then working with its elements

->
each time next() or has Next) is called

,
use the simple iterators next) & has Next)) methods.

->

essentially "translating the results" of the other Iterator
.

What are the advantages & drawbacks Advantages Disadvantages
ofStrategy i ? -> relies on the other iterator object to do the - Can be tricky to implement

"hard work" -> Only works when there is already an existing

simple iterator for the collection
.

The Iterable > Interface

What is the Iterable < >
↓

-> A way for a particular data structure (or any object that represents a collection) to promise

interface ? that it can create an iterator object .

-> All of Java's collection class implement Iterable.

So what dres it mean to be an Lake an object/class that implements Iterable)
... any class can implement the

"Iterable object" ? interface and claim to be "Iterable" as long as it provides an iterator() method

which creates & returns an iterator for the collection.

· this is the only requirement (which
you

can see from the Iterable class code.

- Iterable does not make any promises on how the iteratur object will work.

-So how do you get an iterator object - (name of collection]
.

Iterator (1 ; &the method that Iterable defines
from

one of Java's built-in collections? -2amples : List <String) my List = new ArrayList();

Iterator <String) my ListIterator =

my
List

.

iterator();

Map <Integer , String) my Map = new HashMap() ;

Iterator (Integer) KeysIterator : my Map. KeySet() .
iterator (1 ;

Iterator (String) valuesIterator : my Map-values Iterator (1 ;

What does the Iterable interface
public interface Iterable < T > E

look like? > Iterator < T > iterator() ;

default void For Each (Consumers ? Superi> action) [

/l
...

3
↑

· 2 optional default

methods that we

default Spliterator < + < spliterator()E are going to ignore
for now -

/1
...

3

3

· the iterator() method that
, upon implementation ,

should create and return a new iterator for

the collection
(by the language developers)

What does the phrase "syntatic -> A phrase used to describe a programming language feature that is created for convenience and

Sugar" mean ? is easy to use and type.

· but in reality
,

behind the easy-to-type code
,
there is something more complex happening

· the"syntatic Sugar" just kids the details of the more complex process .

What is a for-each loop ? -> ala an "enhanced for-loop" ,
it is Java's language-level support for the iterator pattern.

· "syntatic sugar" for iteration

-> for-each loops are much less tedious & also easier to code out than while-loops for iterators ;

basically you (the programmer) can use a for-each loop to work with the elements of a collection,

and behind-the-scenes
,

the compiler uses iterator to translate the actions in the For-each loop !

Are there any disadvantages to -> No access to the index number of each element.

for-each loops ?

likea how do you use one ?

I
1/ Do something with each item

· reference to the collection
,
which

What does a for-each loop look
for (item : collection) &

-

· declare a local variable that

references each item (similar 3
to i in for (inti = 0

... (5 ...3

· the local variable's type
must match that of the

items in the collection

-> Example :

List (Integer] ages = new ArrayList() ; for-each loop only works

if ages is i terable in type

ages , add () , ... Integer

ladding several values to the collection)

for (Integer aget :e) E

System .
out . print In lage1) ; & printing every Integer item in

the collection

3↑
3

Systemout
. printin lageI) ;

T

must be an Iterable (T) object

What is happening behind the scenes
-> the compiler calls next() on the iterator with a while loop :

of the enhanced for loop ? Iterator <Integer > iter = ages. iterator () ;

While Literator . has Next 1)) &

Integer age1 = iter
.
next() ;

- These 2 while and for-each loops are thus basically equivalent.

What is decorator ?

I
-> A design pattern that allows us toextend" or modify the implementation of an interface

Decorator

without subclassing/inheritance.

-> Instead of subclassing ,
we modify the implementation class of an interface by relying on an

existing instance ,
& layering different functionalities on top of that instance.

Why not just use inheritance ? - Inheritance is not very helpful for programs that want to compose functionality out of different

·

i. e
.,

if you have a main idea for an object & want to be able to pick & choose different

features Jaka alternate "types of the main obj) & combine features to create one specific

type of that object

-> Recall ! - A class cannot extend from more than I parent class

Example scenario where inheritance - Examine the following example

would not be effective?
·

say you are building a GUI window object. There are
many different possible features

you

jorangenotasreferrea
may want to add to the window -

a border
,

a scroll bar
,

an exit/close window feature,↑
parts

e +c .

(subclass)

· We can start by defining a Window interface for the most basic/simple version of a window,

and a Window Impl class that implements it

· Imagine that the "features" are relatively complex to code & therefore warrant their own classes/object

types... but they all start at the same simple baseline
,

so we can extend each one from Window Impl :

Window
(interface)

↑
Window Impl

↑ (Class)

Bordered Window ↑
ScrollingWindow

(subclass)
ClosableWindow

(subclass)

What if we want to have a Window -> A subclass only has the power to modify I class (its parent)
,

so we either have to :

that is both closable and bordered ? 9) create a new Bordered (losable Window subclass that extends from the main WinduwImpl

3) haveBordered extend from closable (or vice versa) in order to create this combination

& but then
,

what if I want a closable
,

scrollable
,

NOT bordered window ?

-> These options suck because they requires to create whole new classes for every possible

combination of features
,
which is a TON of repeating code - which literally defeats the

whole point of using inheritance in the first place !

-> We also have to "presuppose" all the different combinations in advance rather than on-the-spot

Bottom Line/Summary : - Inheritance does not give us the ability to combine functionalities/features of an abstraction...

this is where Decorator comes in!

I
-> the base & decorator classes are decoupled (no inheritance)

- How Decorator Works
, Conceptually -

↑
-> In the decorator pattern

,
we have I kinds of classes-base classes & decorator classes -

all of which implement the lone) overarching interface for the abstraction.

What areBase classes ?
-> The classes which actually implement the interface (with the most basic version/implementation

of the object
· Window Impl

What are Decorator classes ? - classes that "decorate" an existing instance of the base class with additional and /or

modified functionality
->

they aren't full implementations (of the interface) themselves
,
but instead rely on an

existing object (the base class object) that already has most of the Interfaces required implementations.

How does a decorator class 1) First
,

it asks for an instance of the interface object (in the constructor)

work ? 2) Then
,

it "layers itself" on top of the existing instance by delegating to it for most of

its functionality ,
in order to add on some additional feature.

· as well as potentially modifying some of the instance's functionality ,

as neededd.

How many decorator classes can

↑
-> As many as it wants !

·

ScrollingWindow · Closable Window

· Bordered Window

an instance object utilize ? 1 take an existing object of the interface/base class

↳
create a new instance of a decorator class and "wrap" our object in its functionality

3
.

create a new instance of another decorator class and wrap this same object

in its functionality
.

RECALL :
... and so on. We basically take I initial instance & modify it several times

.

What is the requirement for any class

implementing an interface ? -> It must provide code implementing every method that is defined in the interface.

Why can a decoratorclaim to
-> By encapsulating an instance of the same interface which it implements & which already has

implement the Interface ? I the required implementations - aka the base class object - & calling its methods.

· this object already does "most of what we want .

"

-> To implement the methods that the decorator class does not need to modify :

· the decorator class "delegates" the action to the encapsulated base object

by simply calling that object's version of the method & returning the result !

(this will make more sense after viewing the example)

-> To implement the methods that we do want to modify/add functionality to :

·

same process ,
but we add code

,
either before or after "delegating" Jaka the method call)

S

that modifies/replaces/adjusts the behavior of the base object's method.

-> The decorator class can also choose to t delegate & just replace the behavior completely ,
if desired.

What does the decoratorclass look

I
private Window

og
Window ;

The constructor takes an instance

- How Decorator Works
,
In Code-

like ? public class BorderedWindow implements Window [· of the interface as a parameter.

· it encapsulates this instance of

a plain window as a field
,
and

Bordered Window (Window ogWindow) E ·

·

will ultimately modify this field/
↑

this. -gWindow =

ogWindow ;

I
return that to us .

object to have a border
,
and

3
all of the methods are marked

& Override ·

as overridden .

public String add Text (String text) E · · A method required by the interface but

unrelated to the features given by
String result = ogWindow ,

add Text (text); Bordered Window

directly
,

methods delegate to the

3↑ return result ; 3

*

· Instead of implementing the methodzode

encapsulated instance

& Override

public double paintWindow ()E · · A method required by the interface that

BorderedWindow wants to modify
double result = ogWindow . paintWindow() +

3 LogWindow . get Size(l) ; · We still call the encapsulated instance's

&
method

,
but then modify the result

// (basically some behavior that modifies the method before returning it.

return result ;

3

How do we create and use a 1. create an object of the base class

decorator object ? 2. create an object of the decorator class & pass in the base class object as a parameter,

effectively "wrapping" the base object in a decorator object.

Window baseWindow = new WindowImplC) ;

Window windowWBorder = new Bordered Window (baseWindow) ;

· Window Bordered Closable Window = new ClosableWindow (window WBorder) ;
L

What does it mean to "chain -> When you take an interface-type object that has already been decorated
,

& decorate

decorators" ? it again by wrapping it in another decorator object
· like the example code above

-> When we chain decorators
,

we essentially create a linked list of Window objects in memory , because when

we actually use the most decorated " object in Main
,
it follows the series of objects in order to retrieve info

Main.java :
-> imagine that getName() is unmodified by any decorator,

Sout (Bordered ClosableWindow . get Name()); So the actual info lies in the base class object.

BorderedClosable Window base Window

- WindowWe
name name name

Closable Window Bordered Window Window Impl

decorator ?

I
-> We do this by creating (and callings an "unwrap" method in the decorator class

What doesit mean to unwrap a
-> When you want to extract/access the instance of the original object from the decorated one.

· since this method is added on by a decorator class and isn't a part of the interface
,

we

can only use call it on objects of type Decoratory

How do we unwrap a decorated
-> Since our reference to the object we want to unwrap cannot be of the interface type & must

object (of "Interface" type) ? be of the decorator class' type ,
we must typecast (downcast) the object before

unwrapping it.

Window og Window = new Window Impl) ;
at this point ," closable

"

is of type Window and Window closable = new Closable Window (ogWindow) ;
thus does not have ·
access to the "unwrap()"

method

Window unwrapped = (IllosableWindow) closable). unwrap I

Window must be typecast to ClosableWindow

What is the 2nd common way
-> Rather than decorating base class implementations of an interface with decorator classes↑

2) extends a base Interface
,

and

in order to access unwrap()

the original

to use the Decorator Pattern ? that also implement that same singular interface...

- We can create a Decorator Interface that

2) adds (definitions for) extended frictionality methods

-> And then our "decorator classes" will just be implementations of the decorator interfaces
.

-> Example :

Base Interface "Decorator" Interface

public interface Window E public interface BorderedWindow extends Window &

double getSize() ; Color setBorder(oor(); retrieves

String add Text () ; Window unwrap (); base object

3 3

Comparison of the 2 common Method 1 : singular Interface Method 2 : Decorated Interfaces

Decorator Design uses ? Window
interface

implements M ↑ implements

I

Window Impl BorderedWindow

I
class 1,

class ScrollableWindow

I classsablewindow
class

Base Class Decorator Classes

I
(for Method 1 :)

Summary : What is the Decorator 1 . Implement-make a new class that implements the interface

Pattern Recipe? 2. Encapsulate - Wrap another instance of the interface insidethe new class

3. Delegate - Forward (delegate) all methods to the encapsulated instance.

What are the limitations of -> Multiple decorations must be managed by the programmer
the dpattern ? · Does order matter ?

· Are some decorations incompatible with each other ?↑
4. Modify -

Selectively add or change method functionality as desired.

· What if the same decoration is added multiple times ?

· basically a lot to think

-> No access to encapsulated object's protected fields.

·
can only work with the public methods & fields of the base class Las opposed to

if we had an inheritance/subclassing relationship)
.

How do we usually create new instances

I
-> A constructor that populates new instances with States (by Filling in the fields) .

-SingletonDesign PatternV

I
What are creational design patterns? -> design patterns that control how to create land create) a new instance of a class .

of a class ?
-> Instantiate : to create an instance of a class using the class constructor and

the new keyword
- which asks for an entirely new instantiation to be initialized in memory.

What are some common creational -> Abstract Factory
->

Factory Method

design patterns ? -> Builder -> Prototype
->

Singleton
-> Multiton

-> Singleton ,
Multiton

,
and Factory Method are employed when we want to prevent the use of

the constructor
.

What does Singleton do ? - Controls When and where new instances can be created.

-> restricts instantiation of a class to one "single" instance.

When would it be useful to have a - A class that represents a finite system resource

class that only ever has I instance? · like a camera or another -wideresource

-> A class that is expensive to instantiate
,
but an instance can be reused

.

·
a class where it takes a lot of memory ,

resources
,

or computational power to create the↑
· like a log of logging errors or debugging info - the log is a system-wide

of instance

-> A class that is used to coordinate different parts of your code

resource that we want to be able to add to or send messages to
,

& have every program

in the system be using the same log
· different parts of

your code want to use the same coordinated resource.

What is the goal of the Singleton -> For a particular class/object ,
we want to be able to

pattern ? 9) be able to instantiate an object of the class if one has never been

created (a one-time action/occurence)

b) once one has already been created
, then any

time we use the class/object,

we always only want to get back that same exact existing instance

las opposed to creating new ones) .

Why can't a regular class constructor - RECALL : The way that a constructor is invoked is with the Keyword new;

achieve this goal ?
· The automatic action behind new is to allocate memory & create a new object of

that class for the constructor toFill - new always creates a new object.
->

By the time that the constructor is called
,

its too late to prevent instantiation

- there is no way to prevent a new object from being createdlother than

throwing an exception)

I
that

any code from outside the class is prevented from ever creating a new object.

How does Singleton execute this -> Singleton , Multiton
, & Factory Method's big idea : make the constructor private.

goal ?
·

basically prevent the constructor from ever being called in the first place ,
so

·& then also provide a diff way for outside code to access & work with the instance.

What are factory design patterns ?- A general type of pattern that includes Singleton ,

Multiton
,

and Factory Method

What is their general idea ?- To make the constructor private,
and then provide a different mechanism by which

outside code can create a new instance when needed
,

& Otherwise return the existing
instance if it's alr been created. called the 'factory method'

What is the factory method' ? -> A static method inside the class that calls the private constructor
,

and by which

We can actually accomplish the task of controlling instantiation.

-> When outside code wants to create/access the class object, it calls this static method

rather than calling the constructor·particular instance

name like with instance methods (position] ·getSize()
What does a generalized factory public class FrontCamera implements Camera

dp class look like ? private constructor > private FrontCamera 1) E

1constructor code here 3

"Factory method" for

outside code to create

>

public Static Frontlamera create() E

new objects 1code that controls instantiation and

/ returns a Frontlamera object 3

3

Main. java:

Camera cl = FrontCamera. create(); call the static method when

As OPPOSED TO : creating a new object.

Camera c1 = new FrontCamera() ;
- Employing the Singleton DP-

RELALL : What is a static field ? - A field which contains just I value for the whole class . - a global variable↑ -> aka
, every object does NOT have their own version / data value for the field.

-> Singleton employs a static field which stores the instance of the class object itself.

What are the 3 steps in 10 hide the constructor from public use (private general template for

creating a class with Singleton DP ? 2) provide a factory method to create or return a singleton instance.
3 factory method DP,

30 Have a static field that stores that instance for the class as a whole. - Singleton DP

specific

Singleton class explanation

I
-> The static field is initially empty.

continued : -> The factory method in a Singleton class should check if the object
has already been instantiated by someone before

· if not
,

it then creates the new instance and stores it in the static field .

& this is known as "lazy initialization"- if no one ever asks

for the object ,
we never create it. &

· Then
, everytime a new instance is tried to be created after that

,
the method

simply returns this static field !

Example of a class enforcing public class FrontCamera implements Camera Field

Singleton ? private static FrontCameraSingleton ;
L

Jprivate FrontCamera 1) E

1constructor code here 3

public Static FrontCamera create() E

if (singleton = null) E

singleton = new FrontCameral) ; 3

criticisms of Singleton ?

↑
·we can call the factory method from anywhere in

static singleton

return singleton ;

33

What are the benefits & Benefit

our code who having to coordinate with our other code

about whether the instance has been created already.

Criticisms

· the Singleton DP might be a little 'overkill' - its essentially just a fancy

global variabl...

not all that different than just making (forex) a Front Camera class that

contains nothing in it but a single FrontCamera object as a static field.

· We have to know for sure that multiple instances won't ever be needed...
-

if not
,
it's usually best to keep code general enough to support multiple

instances.

I
-> instead of a single object that everyone shares

,
we have auion of objects where

Multiton Design Pattern

What is multiton ? -> A generalized form of the singleton design pattern .

each object is uniquely identifiable by some specific characteristic.

·For that unique piece of info
,

we only ever want to havea use

1 same object instance
.

Example of an abstraction that -> Imagine aStudent class where
you always get the same object to represent the same

would utilize multiton ? Student- - and every student has a unique PID number

· there should only ever be one Student object instance created for a given PID number

· Whenever an object to represent a certain PID is needed /called/attempted to be created

by outside code
,

the same object should always be returned.

Why is it important to
only have I -> This is especially important if the object is mutable (i .

e
.,

if users are able to

object for each unigrecharacteristic? change aspects of the object (name
,
address

, pronouns,
etc.

· we'd want to make sure that every other part of the system that is using the same

Student instance that is being mutated
,
is able to see those changes.

What are the steps in creating a ↑ steps :

· ala a HashMap (which we initially instantiate as empty) that is a mapping

class that enforces Multiton ? 2) Store a collection of instances as a private
,
static field ; this is ora

"directory" - as opposed to storing one instance (one "Singleton") in the Singleton DP

between each object & its uniquely identifying characteristic (via)

2) Create a private constructor .

3) Create the static factory method (our factory for creating new object instances) ;

· the method accepts all of the same parameters that the constructor would

have (since it kind of functions as the 'constructor' used by outside code

· in the method
, provide all of the information necessary to create a new

instance of the class object - possibly including the
vic

as well.

·. .
a . K . a . invoke the constructor .

8) (In the FM): first search the collection directory to see whether an object

for the provided nic has already been created

& if not
,
instantiate (and return) a new object & add it to the collection

& If
yes ,

then simply return the value already mapped to the vic in the collection

I
/ constructor code here 3

Example of a class public class Student &

enforcing Multiton ? private static Map <Integer,
Student > directory = new HashMap)) ;

private Student (int pid , String first
, String last)

public static Student get Student (intpid, String first
, String last) 3 -*actory

if (! (directory . contains Key (pid) E

return directory
. get (pid) ;↑ -

33

3

directory. put Spid ,
new Student (pid ,

First
,

last)) ;

method

for the same pid,
we always get the same object

I
to dynamically choose which subclass to use & instantiate an object 1.

Factory Method Design Pattern
-

What is the Factory Method -> For an interface or parent class that has a number of implementing subclasses

DP ? and where we want to force the use of a single subclass
,

a FactoryMethod exists

with.

· the decision of which subclass to use is usually subject to some complex

logic that we don't want the user of the abstraction to have to know

or care about.

· User doesn't even have to know or care about what subclasses there are -

they just call the FM in the parent class & are returned with an object of

the appropriate subclass type - but the reference type is the parent class.

In what way does Factory Method

"control instantiation" ? the class in charge of deciding which subtype object gets made.

class ?

·How is Factory Method different

from Singleton & Multiton ? not in the same class as the class where we are wanting to prevent instantiation.

-> for all of the subclasses whose direct instantiation we are trying to prevent ,
our

factory method is written just once
,
in the parent class

What does the static fr method of - this method takes in all the information needed to make a decision
,

& then contains

a Factory Method DP do ? code that figures out which subclass should be used (the "complex logic")
-> It then returns a new instance of the appropriate subclass type.

But how can our subclass constructors -> They can't.

be private if the fm needs to -> Instead
,

we declare the constructors of the subclasses as protected.

invoke them from inside the parent

Example of an abstraction that- Consider a Notification object/class that has several subclasses of specific types of

employs Factory Method ? notifications - Text Notification
,

Email Notification
, PushNotification

-> Goal : user should be able to create a new Notification object that corresponds to a

givenStudent object ,
& the class should return the correct type of notification

for that specific user.

(For ex
,
this could be based on a getNotification Preference method in the Student

class)

I
parent class' constructor < public class Notification E

What would the parent class class TextNotification extends Notification

look like in this example ? class 2mail Notification extends Notification

notice that the static fu class Push Notification extends Notification

is actually inside the

public enum Type & TEXT
,
EMAIL

,
PUSH3 ,

The parameter provides the info

-

public static Notification create (Students)E

Type test = s
. get Notif Preference () ;↑ needed to choose a subclass

IJif (test = = Type .

TEXT) S

the factory return new TextNotification () ;

method 3 else if (type == Type .
EMAIL)E

1 and so on for each type
... 3

33

What would an outside class
using an Main .java

FM class look like in this example ? Student str = Student. get Student (123
,

"Ari" " "Komar") ;

Notification n = Notification
. create (s) ;

Usethe factory method to

4 N dynamically instantiate

notice that while the object the correct subclass.

returned will be of a specific

Subclass
,
the reference type is

always of the parent class.

What is the advantage of using -> It separates the encapsulation of the object from the rest of
your program

Factory Method ? -> It associates
any logic that is needed to choose a subclass all into one spot (the

factory method)

-> makes it super easy to use this class & retrieve a value (just look at Main.java example

above !) - outside users don't need to know anything about how the decision

gets made.

I
Singleton

- Recap : Singleton , Multiton
, Factory Method-

-> All three are creational design patterns

·

private constructor

· static private "Singleton" instance

·

static "for" method for lazy creation/

receiving the Singleton instance.

Multiton
·

private constructor .

·

static factory method for creation/retrieving instances

corresponding to a uniquely identifying characteristic.

"Factory Method↑ should be used.

· static private collection of instances

· static method in parent class for instantiating an object for a

particular context

· "protected" constructors (in subclasses) so that the static method can access them

· Typically used for dynamic subclass binding for deciding which subclass

What is the motivation behind

I
->

Imagine that we are writing an algorithm that is completely definable & written except

Strategy' Design Pattern

What type of DP is Strategy ? -A Behavioral Pattern - patterns involved in helping define the behavior of one object/

program with respect to something else.

Strategy DP ? for one critical missing part
· this "missing part" mayperform an action or return some object that we need and

that we know how tohave already written code describing how to utilize - wejust
don't know how to obtain this missing piece.

·

or maybe there are multiple possibilities for what the missing piece could be
,

and we

(as the algorithm - writers) don't know which one will be the most appropriate for a given

instantiation of the alg .

What is the Strategy DP ? -> Strategy allows us to go ahead & implement that general algorithm without the

missing piece ,
and then inject the appropriate missing "strategy" at the

time that the alg needs it.

-> RECALL : Dependency Injection ; Inversion of Control ;

How is Strategy an example of -> When the algorithm is running & it gets to that critical step ,
it then gives the

Inversion of Control ? control over to the 'strategy object' to do whatever it needs to do & then return

where Strategy is useful ?

↑
· A general program that

,
at some point

,
needs to perform a sort of items. Rather than

the answer to the algorithm so that it can continue running.
What are 3 example situations+ Choosing a sorting alogrithm

choosing & implementing one sorting algorithm for all circumstances
,

we can allow the

specific Sort alg (BubbleSort
,

Insertion Sort
,

Selection Sort
,

Heapsort ,
etc.) to be chosen

at the time that the program is being used.

oldit be useful here?
· Because we might want to use a different sorting alg depending on different circumstances

that aren't known until the time of our program's use ;
- for ex - the size of the collection (be have to consider the time & space efficiency

of the Sort (

-> Determining order of some items

· A sorting algorithm that
,
at some point ,

needs to compare L items to decide which should

come first.

· Instead of writing the sorting alg for the specific characteristics of the object (like alphabetical

Sorting ,
for ex)

,
we can allow the user to inject their own comparison object that will

determine the correct order

·

Our aly doesn't need to know why or how
, just needs to know which object comes first.

I
provided to it at the time that it actually needs to produce its results

-> How to output results

· An algorithm that has created results & produced some output ... how that output should

be communicated doesn't have to be known by thealg in advance & instead can be

·

Aly can then "hand over control" to
some strategy object (given by the user)

,
which

will then produce the correct type of output

-

For ex : a summary on the command line vs. insertion into a log v. S.

written to the disk v . S.... etc.

What is the general structure
-> 3 key components :

ofStrategy ? % An interface that represents "the strategy"- the interchangeable
object that performs some action & that will be injected into some larger

piece of code when it is needed.

20 The critical method signature defined by the interface

· Usually , strategy interfaces only define 1 single method - but not always

(there could be multiple)

· This is the method that the outside code will call - it represents some alg to be

performed.

3) Several implementing classes - called "Strategy objects" - that each offer a

different way
to perform the algorithm/implement the critical method.

↑
public interface Comparator Ts &

an int val that represents the order ;

What is an example of Strategy -> The Comparator Interface
,

which is built into Java Core:

DP ?
*

The interface represents a strategy for comparing (objects of type T ;
it is a generic interface (RECALL : Parametric polymorphism)

*

int compare (To1
,
To2) ;] othe interfaces only method (the "critical method") ,

3
which takes in 2 objects of Type T & returns

val < 0 : Of before of

val = 0 : 01 is equal to of

val > 0 : 01 after of

What would the "strategy objects"
-> First

, imagine aShape object that has a double getPerimeter() & a double get Area () method.

look like in this example ?
- Here are 2 strategy objects that implement comparator >Shapes in different ways :

2
public class Smallest Perimeter First implements Comparator Shape > E

public int compare (Shape of,Shape 02) E

return (int) (01. get Perimeter() -01
. get Perimeter ()) ;

33

I
return int (02 .getAreal) - 01 . get Arcall) ;

public class Largest Area first implements Comparator <Shapes &

public int compare (Shape 01
,

Shape 02)

33

So how would we then use
- Let's say we have created some List of Shapes that we now want to sort ;

this strategy ? List <Shape) shapes = new ArrayList) ;

Shapes. add (shaped) ;

Shapes. add (shape2) ;

shapes . St 1 ;

-> the List interface defines/includes a built-in sort method which↑
2

shapes. add (shape 3);

↳sorts the objects according to a specified order - this is the

"general algorithm" of the "bigger program"

-> the algorithm knows everything about how to sort items but is missing that

last critical piece ,
which is how to go about comparing 2 objects ...

that

is what we have to inject (RECALL: Dependency Injection

This is where we pass in a comparator object
to tell the sort() method how to compare the

objects -

our strategy injection.
-> We can inject the desired strategy into the sort) algorithm by creating a new

strategy object :

shapes.
Sort (new Smallest Perimeter First()) ;

i

shapes.
Sort (new Largest Area First()) ;

address ?

I
->Something is happening inside one object ,

to which another object must respond.

Observer D . P.

What situation does Observer -> Situations where you need to write code that responds to an action or an event occurring .

-> For example ,
a Button object world be a goodobject-the observer objects would

represent & execute whatever action should occur when a user clicks the button

-> Observer DP is often at the heart of asynchronous systems/software .

What are asynchronous systems?
- programs that are built to respond to events/circumstances where it doesn't know

when that event is going to happen.

-> For ex
,

user interfaces-
What are some example scenarios - Event-driven Programming -> User Interfaces

Where Observer is used ? · Events may be caused
,
for ex

, by
· web programming with JavaScript

hardware orpot · Graphical User Interfaces (GUIs) ; button,

mouse
,
scroll

,text
, pop-up ,

etc... all user

-> As a Building Block for other DPs actions that require some coded response action)

· Model-View

What is the design pattern ? ↑ -> Lode/program is organized into I subject object ,
& I or more observer objects

· Model-View-Controller

-> Each observer object defines a special method of code that they want to execute

in response to some specificevent" occurring with the subject object-
the "update method"

-> The subject object is then responsible for notifying all observers that the action has occurred .

What defines an "event" ? -> A state change occurring inside the subject object
-> For example , could be induced by ;

- User interaction with an on-screen UI component (a user pressing a button)
-

Hardware (sensors
,
buttons

,
etc.

-

Changing a field value with a setter method.

How does the subject object know+ It encapsulates a list of all active observer objects... as well as 1 (public)
who its observers are ? methods that allow observer objects to add or remove themselves from the list.

2.
What is the execution sequence

Observer objects register with the subject object (added to list)

for a program using Observer ?
2. An event occurs inside the subject object

3. The subject object notifies all the observers one

at a time by calling the "update method" of each .

4 The observers then react to the event.

5. Observers can "deregister" to stop observing .

Key terms : what is...

I
the same common interface

a subject object (subj0) ? -> An object that causes an event to happen
an observer object(obs0) ? -> An object interested in the event

-> Even if they are different objects (diff implementations) ,
ALL obs0s must be implementing

· because the Subj will register them as [interface) type objects & will call the

same "update" method for each obs O

registering ? -> The act of connecting an observer to a particular subj0 .

deregistering? -> The act of no longer observing an event.
the type of the list is the interface

-

·

that the subje expects all of its

observers to implement.What does a basic subject class public class Subject E

look like? private List < Observer) observers ;- Encapsulates a list of observer

objects

public void addObserver (Observer o) E :

3 or deregistered from the list

public void remove Observer (Observer 0) So

observers . remove (0) ;

private void notify Observers ()5--a method called from within the

for (Observer 0 : observers)[
subject (hence private) that calls

update() on all Observers
, allowing↑

3

observers
.
add (0) ; allows obs0s to be registered

o
. update() ; them to respond.

333 - most basic form : a for-loop

What does a basic observer -> In the most basic case
, just contains a single method - the "update

interface look like ? method" - that the subject needs in order to notify the observers ;

public interface Observer E

void update() ;

3

I

↑

What does a basic observer Encapsulates the subject public class ObsImpl implements Observer

impl class look like ? being followed ·

-privateSubject subject1 ;I Jpublic ObsImpl (Subjects) E

Adds itself as an observer · subject] = S ;
of the subject. · subject 1

.

add Observer (this) ;

3

When an event occurs
,
this public void update() [

code is executed // For example :

System. out. printin ("You scored ! ") ; 3

13 I
What are the limitations of 2. If an observer is registered to Iwants to be notified by more than one subject
this basic version of the object ,

it has no way
to know which subject is notifying it

Observer DP ? · update() method will get called ... but by which subject ?

2. The obs0 doesn't know/receive any information characterizing how the subjo has

changed , just that a change has occurred - no event context.

What modifications can we make

to solve these ? -> have the update() method take a subj0 as a parameter !

Limitation & Improved subject class :

·. private void notify Observers()[

o
. update (this) ;

333

Improved object class :

· No longer need to encapsulate public class ObsImpl implements Observer [

the Subj inside the obsoclass public void update (Subjects 15

·

Object can code different 7 System. out. printin ("You scored ! ") ; 3

reactions based on whatSubje 3

called the method.I
for (Observer 0 : observers)[

Limitation& -> have the update() method take in event information as a parameter too !

how can we pass in event info ? - This is commonly done by creating an event object class that encapsulates all of

the useful contextual info describing what occurred
.

Then :

2) have the subject class create a new instance of the EventObject everytime the event occurs

2)
pass this event object as a parameter into the notifyObservers method

↑ 3) have notify Observers pass this object into the update method for all observers
.

↑

I
Example of the improved new class defining an event :

subject & object classes ? public interface Event E
/l for example :

String getType () ;

String get Team2); 3

Further Improved observer class :
-

public class ObsImpl implements Observer [·

The update() method now

~ takes in 2 parameters;
N

3 -

I

inchobject produce What actually happened

Further Improved subject class :

public class Subject E

* o

the method where the event takes place>
public void action Occurring &

// for example:

Event 2 ;
if (...) E

Whenever the event occurs
,

a new Event

object is created
M

· e = new EventImpl(xx , yy)3

&else if (...) E

e = new EventImpl (aa
, bb3

notifyObservers - this time passing
< notify Observers (e) ;

in the appropriate Event object 3

for (Observer 0 : observers)[

0. update (this ,
e) ;

333!
The action method then calls

private void notify Observers ()[

I
- Alternate

ways to support Observer programs with multiple events-

2. Separate Observer interfaces
Motivation behind -> Currently

,
we only have I Event Impl class that encapsulates the name & etc. of

this method : a given event
,

and no matter what the event actually is
,

all observers get

· but what if only a few observers actually care about the event ? For ex,

a UNCFan doesn't care about or need to respond to an event whereI
notified of it (& thus run their respective programs

Duke scored points (which is why the UNCFan contains an if statement

that seeks to deduce the details of the event that occurred ;

if (. get Name == "UNC")E

sout ("yay ! ") ; 3

· Want to avoid having to run the UNCFan update) method entirely
-> Instead

,
the subjO might want to support separate events that all fire independtly.

The solution strategy : - Separate observer interfaces for each type of event -

e .g.,
a different

obs0 object Klass for each kind of event.

· obs0 classes can pick & choose which event interfaces they implement ("register with") ,
so that they are only notified at a time when they'd need to perform an action.

Pros and Cons : * Allows the observer to only process what it wants

* requires subject to provide separate registration & notification methods for each

event -

more tedious in the Subj code.

· type of event

public interface DukeScore Obs E ...
3

-> public class UNCScoreObsImpl implements UNCScoreObsE

public void update() &o ·

obs0 class ... now it

doesn't need theIf
sort("yay ! ") ; 3

Statements !

(continued next page)

Example :

!
->

public interface UNCScoreObs E ... 3.
interfaces for each

-> public class Subject E

private List < UNCScorcObsImpl) ;o Subj0 must encapsulate

separate lists for each

private List < DrieScoreObsImpl >; observer

public void action Occurring E

// for example:

Event 2 ;J
I

that occurred is relevant

if (...) E

e = new EventImpl(xx , yy)3

notify UNCObservers() ;
else if (...) E

· subj0 decides when to

e = new EventImpl (aa
,

bb ! 3
notify which observers -

notify Duke Observers)) ; ·
aka

, only when the action

3 to them

private void notify UNL Observers (1 E -

... 3
subjO needs to define

private void notify Duke Observes11 E
-

update()
,
add 2)

,
and

remove() methods for
... 3

each observer type

public void add UNCObserver (UNIScrreObsImplo)E ... 3 · could get tedious if

public void add Duke Observer (DukeScoreObsImplo) 3...
3

there are many

land soon ...
) 33

8 . Single observer interface with

multiple "update()" methods

Motivation :
-> Similar to that of alternate method I - a program that has several obs0

types and
many different possible events would benefit from some way to organize

& streamline the observer notification & response process .

Solution strategy
:

- A single interface definition (that all obs0s implement) that defines separate update

methods for each kind of event ;

updateThreePointer () ; updateDrieScored() ; updateUNCScored();
-> the subje chooses when to call which method (based on what happened) ,

but this notification

does get sent out to all observers (unlike alternate strategy # 1)

Pros & Consi * Observer must provide/implement all the methods required by the interface
,

even the ones that

are assoc . W/ events they don't care about

- the method can just be empty (since its void)

& reasonable approach if most observers will want to process most event types.

(FP)

I
to be executed

, passed around as argument, modified
,

created
,

stored as variables
,
etc .

Functional Programming
What is functional programming ?

-> the functional programming approach allows functions to be their own code "objects"

->

Essentially
,

"functions" are the primary thing (the"first class citizen") being
instantiated & utilized

,
rather than entire objects .

· This approach is a useful pattern for coding many real-world scenarios.

How does FP differ from -> emphasizing the function rather than the data

OOP ? -> In OOP
,

the primary organization of our code is around the data type

basically collections of data)
,

& to have them interact with each other.

->
In contrast

,

FP focuses on functions themselves as the things that we create
,↑

&

· our program's purpose is to create particular kinds of objects (which are

modify
,

and work with

· functions are kind of "objects" in and of themselves.

What is meant by the term "function" ? -A block of code that whose purpose is to execute a particular action (often specific toutilizing
data that is provided to it.

· RECALL: Instance methods... "Functions" are sort of the same
,

in concept/purpose.

Comparison of object-oriented Object-Oriented Functional

versus functional programming ? primary unit of -> classes/objects -> Functions !

code organization
data storage &

-> mutable fields grouped -> immutable variables grouped

execution I into classes I into structures

Ce execution -Methods that Mutate +1class functions w/ no side effects-

their data (w/side effects) the result is just a function of the inputs

What is an example of functional
-> Observer object classes in the Observer Design Pattern !

programming that we have looked at?
-> the whole point of the entire classes impl an

Obso interface is simply to define a single
public interface Observer E

update() method (which is basically a function/algorithm
public void update (Subjects , Evente) ;

3
-> they have no fields or constructors or anything

-> In a more FP-oriented programming lang (like Javascript) ,
we would be able to execute

this DP wo needing those obs0 classes - the subjo could simply call the functions
,
because

-

the functions themselves can be passed in as an argument , stored on a list
,
& then called again

later.

How do
coding languages support - Most other languages (besides Java) have built-in features that allow frections to be

functional programming ? used more flexibly
- for ex

, being able to store a function as a local variable.

-> Java eventually began adding some limited support for FP.

Before FP-support in Java ,
what

-> To use a "function" in aMain class
, you

would have to do 3 separate things :

was the traditional
way to execute

1.
Create a java Interface file that defines a method (the "function")I

->

Coding FP with these OOP features is tedious & feels like too much coding
-

FP-based projects ? 2

Creating ajavaClass file that implements that interface & defines that "function object
"

in some implementation - specific way (think UNCFan versus DukeFan). s
3

Immediately create an instance of that class (in your outer
,
current file) .

-> a . K . a
. the same approach we have been learninga doing for all the assignments in class so far.

-> for ex
,

the Observer DP strategy described in prev. Chapter of notes .

Why is this method inefficient for
-> The "programming to an interface" method was created for (and is useful for) Object-Oriented

FP programs ? Programming

·

anytime we want to incorporate an interface that only defines one method
,
we have to create

· What if that specific implementation only needed to be used e in your program ? Creating
a whole new class is excessive.

What FP-support did Java-Two new language constructs that
,
for

any
interface

,
allow us to carry out steps

eventually add ? 2 and 3 (prev . page) all in one expression !

· anonymous classes↑
a whole newjava file implementing it !

· lambda expressions

What do these I expressions do ? I they effectively result in a reference to an object that implements some interface.

-> You still have to have an interface to define the function we are providing an impl for ;

Java is still an OOP language - these I features are just syntactic sugar to make it look more

like an FP one.

- Anonymous classes-

What is an anonymous class ? -> A class that is :

· defined/created inside another class rather than having its ownjava File Cam"inner class")
· doesn't have its own name

· A class for which only a single object is created.

-> Allowvs to make our code more concise because we can declare & instantiate a class

at the same time.

->

Away to quickly make an instance of an existing interface who creating a new file

How do you create a new
-

Say we have this existing interface :

anonymous class ? public interface Fan &

void update (Gameg) ;

3

↑

-> Rather than creating a new UNCFan class which implements Fan
,
we can create a

new instance of the interface object (in our main/orter code files
,
& then define

the method (s) of the interface right then & there:

Example? Main -java : · creating a new instance of the interface type ,

Fan tarheel =new E which we would otherwise NEVER be able to do

&Override - (since all it contains is method signatures

public void update (Gameg) & · Right where we are declaring the instance
,

weJ brackets after the new instantiation
.

if (g .

whoIsWinning)) . equals ("UNC"))E ↑ are also creating the anon class body-hence,

& 339istem. out printin ("60 Heels !
"

1 ; 3

↑
=

S
defined directly in the

anonymous class body

What happens when we create more everytime we create a new Fan
,
we are creating a different anonymous class leven

instances of the interface ? if we were providing the exact same code in the body) ,
and creating exactly one instance of this class

-> For purposes of identifying
,

these anonymous classes do have "names"
,
which are random & are chosen by Java-

but all of this is hidden from us by we don't have to care about that.

- Lamba Expressions -

What are lamba expressions ? - A type of anonymous class for interfaces that define only I single method.

& like the Observer [... 3 interface !

How do
you create a new instance Mainjava :

using a lambda expression ? Fan tarheel = (Gameg) - > E
· Instead of using the new Keyword,

M

↑
go ahead& define the method body

.

&

the interface method is

if (g .

whoIsWinning)) . equals ("UNC"))E the method's parameter list goes

↳
& System . Out printin ("Go Heels ! "); 3 in parantheses , followed by an

3 ; & "arrow" ->

! -> This parameter list must match the

Since the interface only has I method
,
we don't one of the interface's method.

similar
to

have to specify the name & instead can just

How is this Functional Programming! -> this structure
, although it still technically is defining a new class "object" ,

makes

the instantiated object look more like a function

· the tarheel variable looks like it is equal to the function defined below
,
but in reality,

Java has created an object class (of some random name)that implements Fan
,
and

assigned tarheel to be equal to an instance of that class - so
,
still an object.

#$%
: key info : secondary key info

Midterm2 Study Guide : subheadings : key terms

#nit6 : Error Handling)
-> Exceptions : Unexpected/unusual situation which crises during execution of a program ... can (should) be anticipated & dealt W by the program

Whenever possible.
-> Early error-handling strategies

& ·
Global error codes :a global variable where we store an int representing

⑳
Special return values :

we designate a special value that a method

an "error code" whenever something goes wrong. should return if it initially attempts to return some out-of-range
· declare a public static inte top of a class value that it shouldn't have produced.
· Anytime code does Suthe where an error would occur

,
we have to check · void functions : should instead be it methods that return a number

the variable to see if it is still 8 or has changed indicating the error status (like w/ global error codes)

-> DRAWBACKS TO EARLY METHODS :
· other functions : same thing- or could have the frection return null

& Reliant on documentation (made by the pergrammer) explaining what Programmer's responsibility to remember to check for errors at every potential spot

each error zode/return val means - this docutation needs to be well lotherwise program could continue on unaffected& cause bigger problems later)

understood by others using the program & (global error codes) have to clear out global var's value after each time

& (global error codes) if 2nd error occurs while It is being handled
,
there is an error is handled

nowhere to store the code = Modern Strategy : Exceptions
Unit 7 : Exceptions & PRO : safer than old methods ; can sure that any code is executed that needs to be

-> Exception handling : Formal method for detecting & responding
to errors ; all languages provide a built-in mechanism for this.

-> Exception handling in Java : Exception objects -> Throwing an Exception

· objects for each specific type of exceptive
,
that encapsulate details · the "detection" aspect - signaling that suthe has gone wrong.

ab the error that occurred - Java provides many built in exception classes · Sequence of events :

Po
· classified with inheritance : exception object is created at the time that it is being thrown

(extends throw new RuntimeException ("moblamblah.
") ;Throwable parent class

n & & exception class type error message

Error. java -
Exception.java 2.

Right after this line
, the method/program stops executing & We start

....

2Exception ClassNotFoundException CloneWotSipException RuntimeException "Unwinding the stack" to look for a try-block.

- ArithmeticException# # # ↑ 3.

Program unwinds & When it finds a method assoc . WI try-block,
it

-
- W goes to execute the subsequent catch-block which then handles the error.

-> "Error" represents externally caused , unrecoverable problems that generally shouldn't be caught/handled
& if program Fully unwinds who

- Catching an Exception
like

,
in the Main method...)

error being handled
, the program dies .

I
not some separate file

-> the "handling" aspect - providing the code to handle a thrown exception.↑
-> try-blocks : the block of code where we write the code /all the method that has possibility of an exception

-> catch-blocks : the block of code which contains the actual code handling the exception (how the prog responds to a given throw

· usually multiple catch blocks
, each one corresponding to a different type (class) of exception.

*

program jumps through the catch-blocks
,looking for the (first) one that defines the same Exception class type (or a parent class uf) the thrown exception.

5.
executes the code inside the zatch-block CONLY the Is "match" - doesn't look any frother

3.If no matching catch-block is found
, program returns to "unwinding the stack"& repeating the process by the next method on the call frame.

Unit 7 : Exceptions Ctd.

-> finally block : placed at the end of the sequence of catch-blocks
-> Best Practices with Exceptions

and contains code that needs to executed no matter what
2)

Throw exceptions EARLY - as soon as you detect awrong value

·Whether or not an exception was thrown
· Defensive programming

· whether or not it was handled by a catch-block

2)
Be specific when throwing exceptions

,
& try to use abuiltin type

-> be able to explain the following code execution if methodBL) when possible
throws an exception; 3)

Catch exceptions LATE-let it bubble up" to the level

try [of the program
where it will actually make sense

method Al) ; ·

Only catch it if you have some (programmatic) way to

method BL) ; deal with the error.

method (1) ; 3
PNEVNOMILDEVICE: Unchecked = Rentime (& Throwable& Error ...

Catch (Runtime(xception e) E
unnecessary to "catch or specify

"

(...) 3
checked = everything else ... must "catch or specify"

Catch (Illegal StateException f)&

(...)3 Unit 1 : Checked vs Unchecked Exceptions
& IUnchecked Exceptions Con prev page) Checked Exceptions Tonprespage)

-> RuntimeException & all of its descendants ; the Error class ; -> All other Exception subclasses (as well as Exception itself)

and the Throwable class -> Respondingto errors caused by Factors outside the program's control .

->Fors caused internally within the
program (e: logia errors · Our prog is responsible for always responding to these

that really "never should have happened" -

eg programmer's fault -Subject to the "catch or Specify" rule .

-> should only throw exceptions if we know how to handle the - Exception must be caught (or specified) inside the method itself

Situation. May or may not need to address them in our code (not just the file where it is being called .

-> not subject to the "catch or specify
"

rule -> "Catch or specify
"

rule : if a method contains code that might throw

-> exception is thrown inside the method
,
butaught in the a checked exception ,

then the method must also EITHER :

A
File where the method is being called. catch the exception internally (with try- & catch-blocks)

(methodB() [if (x == 2) Ethrow new RuntimeException)(;33) · do this iff the current method is the correct place to handle the error

(main & try EmethodB() ; 3 catch (RuntimeExceptione)E ...33) (and we know how to deal with it
OR

B

-

specify in the method signature that the checked exception might

-> "Catch or specify errors" be thrown by the method :

· by specifying an exception in a method
,
we're basically "putting off" handling it public int method(() throws File Not FoundException

·

we still have to catch it somewhere
. 2 options :

... 3 (bespracti

1
catch the exception in the Main method by calling it inside a try-block do this if the error needs to be dealt what a higher level

8. force the exception to continue "bubbling up" by having the Main method basically instructs" the error to bubble up

ALSO specify the exception (in its method signature) ;

public static void main (String[] args) throws FileNotFoundException E method(1) ; 3

#nit7 : Compile v.S. Runtime Errors

Compile-time US Run-time

-> caught before you run your code -> compiler can't warn us ;found upon execution

-> Syntax errors & etc. I -> All exceptions objects

-> indicate that something is -> Indicate that something is wrong

incomplete aboutour program with the log of our program

Unit8: JUnit
-

-> Y levels/stages of professional software testing :

Unit testing Integration Testing System Testing AcceptanceTesting
· Testing methods & classes

· whether new code/classes works · Testing entire system aso business aspect ; whether the program
in isolation w the rest of the program

a whole is meeting consumer needs

· done during development · during development
· AFTER development · occurs before release

-> key terms & definitions

JUnit · a Java library/framework to help us write unit tests Test Methods !

Assertion methods· statements ab what should be true at some point in the
-> non-static (instance) methods which each test a

test-they either re smoothly or raise an exception . single method, field, or constructor of a given program class

· These methods are static
.

-> return type : void (usually)

· assertTrue (condition)
,

assertFalse
,

assert Null (object) -> Anatomy of a test method :

8. create an instance of the program
class

& Test · compiler directive to mark which methods inside a ⑳ use some methods to change that instance's internal states

or some other action

test class are mit tests (& not
,
like

, helper methods)
↑
& Test Bo

use JUnit Assertions to verify that the pe methods return the

correct values-

test class · separate class where we write the unit test methods public void test Name() &

·

Conventionally : separate test class for each class Product prod = new ProductImp) ("shoes"
,

12 .70) ;
of the

program. assert Equals)"shoes"
,

prod getName()) ; 3

-> When does a unit test fail ? assertEquals versus assertsame

· if an exception is thrown AND is uncaught ! If its caught,
- assert Equals (expected

,
actual) : uses equals() method ; checking

test will still pass CONTENT equality

·When assert methods don't return the expected value
, they throw assertSame (expected,

actual) : uses = = operator ; checking if they

exceptions (this is built into the JUnit assertion method library) PNEUNOMIC DEVICE :

are the same object in memory
-> Best practices inWriting Unit tests assert Equals -> usingequals() -> The size of my shirt equals the size

2)
Isolate unit tests as much as possible : each test aims to test of

your
shirt

one aspect of a class - although its ok to call multiple pamethods assert Same -> My shirt and your shirt are NOT the same shirt

if necessary ,
be its hard to test things completely in isolation

3
High test coverage : write many unit tests in order to cover a variety

2)
Use more specific assertions when possible because they describe the of expected AND edge cases

& Ideally
,

ALL lines of code in the program class should be executed/called
situation more fully (espec if test fails & we want to know why by the test class & methods .

· for ex
, choose assert Equals over assertTrue when possible

Unit 9 : Iterator

Iterator Design Pattern -

Key points Iterator <T> versus Iterable < T >

->

purpose : be able to access the elements of a collection in some
-- both are interfaces provided by Java in support of the DP

Iterator<TL

particular sequence WITHOUT "exposing its underlying representation. "

&
wo needing to know any details ab the collection (what it is

,
size

,

· interface defining 2 primary methods - boolean has Next()

how its being stored
,

etc.) andTnext() that all iterator object classes must implement.

·

user should just be able to call Literator obj name)
. next) & get the this interface is important to us when we are creating a new specific

iterator object (like Alphabetizer)
next object in the collection of data they have provided.

Iterable < T >
· keeps track of where we are in the collection

->
an iterator object : for a given collection

,
it is a class thatencapsulates interface representing a class (usually one representing a collection) that is

the details of how to loop through it. capable of creating and returning an
Iterator object for its elements

-> the iterator pattern/object assumes that the collection will not be o only defines] required method : Iterator <T) iterator()(

modified while the iterator is being actively used.
·

any class can implement Iterable <> so long as they provide that method.

Situations where Iterator is useful
· All of Java's collection classes implement Iterable s (Map

,
List

,
Set

,
etc .)

2.

huge collections (IM + elements
,

for ex) ; data two big to store in for - each loops

memory (like in an array -> Java's language-level support ("syntactic sugar") for the iterator pattern.
2

generative collections ; sorting through a collection (with no finite -> for (objectType obj : collectionName)

size) that creates items on demand ·3

->
can only be used for objects that implement Iterable

-> behind the scenes
, compiler uses the collection's Iterator object to translate

the actions in the loop

Unit 10 : Decorator

-> allows us to "extend"/modify the implementation of an interface by relying on an existing "base" instance & layering diff functionalities on top of it.

How it works - 3 components Decorator classes

2)
an interface for the object in general

-> They want to "add on" functionality via implementing Some (not all of the

2)
A "base class" implementation representing the most basicversion of the interface's methods in a diffway than the base class did

abstraction object
· previously we would achieve this by creating subclasses of the base class

3
Several "decorator classes" implementing the same interface.They

and using everside to rewrite some of the methods

encapsulate an instance of the base class (which they take as a parameter
-> Instead

, the D.C . s implement the interface directly ,
& for methods that

of their constructor)
.

they don't need to modify
, they simply call the encapsulated base class

Why/when is Decorator more efficient than Inheritance ? version of the method &d return the result
.I

thisDecorated Item implements Item & is called "delegating"
-> One class cannot extend from more than 2 parent class ; impossible to private base Item base ; (to the base object

add more than one "decoration" or pick & choose different features public String getName()
-> After construction of an object , we can't change the underlying functionality/ return base . getName(); 33

data type. -> For the methods they do want to modify : delegate but add code before or after

-> Decorator is better if we want to "compose functionality out of different parts" that adjusts the behavior .

#nit10 : DecoratorIt
-> Decorator decouples the base from the decorator classes (a .K .a .

no inheritance

-> When we chain decorators (taking a decorated object as the constructor param of amother decorator object in order to layer several decorations

onto one initial instance)
,

we are basically creating a linked list of the interface objects in memory ;
the

·Think about it.When Decorator 2 takes in a Decoratory obj & delegates to its methods
...

Decorator] obj then delegates to the base class' methods.

#nit11 : Singleton & Multiton

-> creational DPs controlling instantiation of an object via a private constructor & a static klass - associated) create() method

that users will call instead of constructor
,
when wanting to create a new object.

-> the static method - called the "factory method" checks to see if a new instance should be created - this is how the class "controls instantiation"

·if
yes ,

invokes constructor
,

creates instance & returns it to user

·if no , returns an existing object to the user

-> the static method takes all the same parameters as the constructor
, since it basically frections as the "constructor" for outside users .

Singleton Multiton nic
.

"

ever be one existing instance of the class
, anywhere,

ever characteristic (like an ID number
,
for ex)

-> restricting instantiation to one single instance - there should only

I
->

every object instance is associated with some uniquely identifying

· EX :
a Front Cameral) object

· Not like we are assigning a random num to each instance - the abstraction

->
private ,

static field (which is initially empty) of the class object naturally/logically already embodies the idea of a u .
i

. C .

for each

that stores the 1 instance (the "singleton") for the entire class. object (which is why it wants to use Multiton DP in the first place) .

private static Front Camera () ;
-> restricting instantiation to

no more than one single instance for a

-> create()/"Factory" method checks if obj has already given v . I . C.

been created Laka if the private field is empty) ...

if not
,

creates
· Ex : a student object where each student has a unique PID.

a new instance right then & there & stores it in the private field ->

private static field (initially empty) of a collection (like a HashMap)

· then
,

returns the private field object (which was either of instances & their respective v .
I . C. s for the entire class

↓snow or previously created)
. private static Map < Integer ,

Student

· "lazy initialization" - if no one ever asks for the object, a create() method searches the private collection to see if an instance

it never gets created
.

has already been created for the provided v . i . C
. ...

if so
,

returns

& returns it.

I
that instance .

If not
,

creates new instance
,
adds it to the collection,

Unit 11 : Factory Method - The subject object class

-> similar to Singleton & Multiton : creational DP
, preventing

· subject : An object that causes an event to happen.

use of constructor... all three of these are part of a general category private list field containing list of all of its active observer objects
of DPs called "factory design patterns" ·

public add Observer & remove Observer methods which take an

-> difference from Single/Multiton : obs0 as a parameter ,
for observers to register or deregister from

&
not restricting the am. of instances that can be created

,
and the subject-adds or removes obs0s from its private list

.

&
the create() method isn't in the same class as the one where we are

-> obsO calls addObserver in its constructor

trying to control instantiation
.

·

private notify Observers() method that calls the update() method

-> purpose : "dynamic subclass binding" : dynamically choosing which
of all observers in its list... subje calls its notify method whenever

subclass to use to create a new object with the event occurs . Its sort of a helper method for the subje
- Components :

->

Theobserver object Interface & classes

2)
a parent class defining some object-like aShirt · observer : An object interested in the event

2)
several subclasses defining specific types - Redshirt

,
BlueShirt, etc .

public interface SomeObserver E

· these subclasses have protected constructors (only accessible
void update() ; 3

within their class file by their parent classes)
· all observer objects must implementthe same interface leven if

"

a public static "factory"/create method that is in the they are diff types/versions that implement updated) differently)

parent class
-> so that the subje can have one list of the interface type .

-> The create()/ "Factory method"
· a public update() method that

,
when called (by the subjo),

executes

· takes in whatever info needed to make a decision & then contains some specific action in response.

code that uses some logic/process to decide which subclass type
·(only in must basic version) obs0 encapsulates instance of the subje

should be used
-

Specific upgrades to the Observer DP

·

returns a new instance of the appropriate subclass (it can & Observer registered to multiple subjects ,
wants to know which

invoke the constructors of the subclasses since they are protected,
not one called its updated) method

private . I SOLUTION : have the update method take a subje as a parameter so

Unit 12 : Observer that obs0 receives this info when executing response action.

->

purpose : situations where something is happening inside & observer wants event context : more info/details on the event that

one object ,
to which another object wants to respond occurred

,
rather than just knowing that it took place

·

user interfaces (like GUIs]
... responding to a button being pressed, SOLUTION:

a mouse click , etc.
2) create an Event interface & various impl objects representing diff

· event-driven programming ,
where events are caused by things like types of events & encapsulating specific info about those events

hardware or user input
2

have the objos update 2) method take an Event object as a parameter
·

as a building block for the Model-View & Model-View-ControllerDPs 2) have the subjo's notify Observers () method also take an Event

-> What defines an event?: a state change occuring inside
as a parameter ,

so that it can pass this object into each obs0s

the subje ; could be anything from user interaction with a UI component, update (subjects
,
Event el method when it calls them

, choosing
to simply a field value being changed by a setter method. which Event to pass in based on what occurred

.

#nit12 : Functional Programming
-> What is Functional Programming?-

-> functions as their own code "objects" - the"First class citizen"

being instantiated & utilized
, passed around as arguments ,

modified,

stored as variables
,
etc

· as opposed to OOP
,
where theFocus is on creating objects (which

are basically collections of data) & having them interact with

each other.

-> the Observer DP is an example of a program that could be implemented

with FP rather than Oop-the obso classes are effectively

just functions since they are only used for their updated) method.

Functional Programming & Java

-> Java is an 00 programming language (not made for FP projects)
but they eventually added some language - level support (syntactic

sugar) for FP-anon
. Classes & lambda expressions

Unit 12: Anonymous Classes & Lambda Expressions
-> useful when we want to do functional programming but still have to How do Anonymous classes work ?

Main
-java :

operate within the realm of Oop & create object classes for the functions Fan tarheel = new Fan() E creating a new instance of the interface type
&Override

(like observer objects which represent updated) functions] ·ioidopdatesGames defining the methods of the interface Jaka what

->
purpose

:For any
interface

,
allows us to create a new class & instantiate

if (g .

WhoIsWinning . equals (Uncld
would be the "class body") right then & there

System. Out printin ("Go Heels !
"

(; 3

an obj of that class - all in one expression ! ·i
· as opposed to creating a whole new class file just to define-> the anon classes do technically have names for purposes of identification,

a method (a "function") that's only going to be used once.
but these "names" are just random sequences of numbers chosen Land used

-> the expression creates a new class (that doesn't have its own name only by) Java-so all of this is hidden from us by we don't have to

& creates (& returns) only one single object of that class ... We
care about that

more

can't call this class later or create anyobjects of it. -> How do Lambda Expressions work ?

->expressions that result in a reference to an object that implements
·

they are basically just anonymous classes for interfaces that define

some interface .

" only I single method.

Main -java :

Fan tarheel = (Gameg)--Es parameter list of the

if (g .

who IsWinning)) . equals ("UNC"))E method-

System. Out printin ("Go Heels !
"

(; 3

3 ;

-> only I method
, so don't have to specify which one

we are defining

Leftovers (not in study guide)
-> Test Driven Development

-> the Fail() assertion method

->

"Envisioning a Unit tests" & the algorithm specification stuff call of those pages)
-> design patterns

-> the 3 strategies for making an iterator class

-> entire Strategy DP chapter

·

Decorator leftons :

-> unwrap() method

-> limitations of the pattern

Unit 11 leftovers

-> benefits & criticisms of Singletor
Unit 12
-

-> alternate ways to Support Observe
programs / multiple events

(HCI) ?

I
interesting problems & challenges of how we interact with computing devices

Graphical User Interfaces
-> The original asynchronous programming model.

->
part of the Field of HCI

.

What is Human Computer Interaction
->

a major field of computer science (@a very active field of CS research) that focuses on the

->
a "computer" can be anything from a PC to a car

,
medical device

, robot
,
or etc.

What are user interfaces ?
->

they are essentially a feedback loop between a human & a computer ;

& A human provides some sort of interaction "input" to the computing device (like pressing a button)

& The computer reacts to "consumes" this interaction & then produces some feedback action to

the human (like a sound playing ,
or a window popping up) ... which the human can

then respond to with another interaction
.

&
continuous cycle of the human& the computer providing & consuming "interactions" from

each other.m(CLI) I called "commands") into the 'Command line'-

·

the shell a . K . a .
the platform where a user can input commands

·for ex
,

the Terminal application on Macbooks

-

pressing 'return'
,
& having the computer perform some response action.

What is a graphical user interface? A visual user interface where users interact with the computer through graphical
(GUI) components (such as buttons

,
menus

,
windows

,
and icons)

,
instead of through typed

commands (text-based

-> much more interactive than CLIs

-> GUIs were first created in the late 1970s
,

& have essentially taken over the
way

that we think about computers .

- GUIs are made up of UI components (widgets).

What is a component ? -> A VI element that acts as a unit of interaction

-> basic VI components can be composed together to make compound

UI components
- like a menu

,
a pop-up/modal/dialog ,

or a panel (just some examples

What are some basic UI components? · text label
· I con

· text in put field

·

image
· button ·

password field

· geometric shape
· Inputslider · hover tooltip

How do we use VI components to +we rely on some 3rd party software (some library or operating system or etc.) to provide us

create GVIs ? the VI components
,
which we then pack into our program .

How does AWT work ?

I
-> We write a program

& call & Utilize these AWT classes to abstractly design a GUI

What was Java's original GUIlibrary? -> AWT (Abstract Window Toolkit)

->
it provided basic VI components in the form of classes (Buttre class

,
Slider class

,
etc.)

· can't see any of the visuals while coding... only after running the code

- Then
,
when we run the program ,

the Java runtime environment translates your code into an interface

displaying those user components
,

in a way that's specific to the operating system
-

i. e
.,

if
you write a program on your Mac laptop for an interface window with buttons & a

scroll bar
, running the code generates What looks like an actual Mac application ,

with

standard Macintosh format buttons
,

sliders
,

text etc.

-if
you run the same code on a Windows Computer ,

it would generate a Windows-style interface

- This aligns with Java's goal of being code that you could write once & run on any computer.

What was the drawback of AWT? - It could only provide the most common/basic VI components that it knew that every

operating system would be able to support/have a built-in display mechanism for

-
Limited to just the intersection of all of the different operating systems' VI toolkits

m

-> platform-dependent

What was the second version of ↑ -> Java Swing ,
a new set of classes that was an extension of AWT

Jara's GVI Framework ? -> Java designed its own GUI framework for how things looked & behaved

-> Intended for desktop First
.

How is Swing different from AWT ? -> Rather than connect back/rely on some existing operating system component ,
the Swing components

"draw themselves" & result in a Java-specific interface "Look and feel"

· No matter what computer you run a Swing program on
,
the produced interface looks

exactly the same (standard "JavaSwing" format
,

rather than Macintosh
,
Windows,

etc .)

-> PRO : not limited to only the basic components that already exist on operating systems.

-> Swing is still the built-in library provided by Java for
writing

GUI
programs.

What is JavaFX ? -> A modern 3rd party GUI Framework/toolkit

-> Well-known (one of the "latest & greatest") & widely used

What is special about JavaFX ? -It allows
you to write a GVI program that can arrange/reformat itself properly for different

operating systems
·for ex

,
can write a program & run it on your laptop OR your phone - the components

can render themselves to fit a smaller screen

->
the components in JavaFX are written to be responsive to their display environment

& context .

What characterizes the visual appearance
->> JavaFX was influenced/inspired by web application development & was created with responsive

of JavaFX GUIs ? design in mind.

I
how those pieces look (in terms of color

,
format

,
etc.)

-> Like web dev
.,

JavaFX enforces a separation of content-

from Style -

↑
which pieces you're putting together ,

& where they fit on the screen

Using JavaFX

I
-> see "Graphical User Interfaces" notes for definition of JavaFX

.

What is the JavaFx "Application" -> an abstract class provided by JavaFX that serves as the "entry point" for

class ? creating a JaraEx program.

· to create a Javafx
program , you must create a class which extends

What are the (basic) components of
1

. An overridden version of Application's abstract void "Start (Stage stages" method :

an Application subclass ?
· inside this method is where we actually set up the GUI-sort of the "main"

for a JavaFX program
2.

A public static void main (String23 args) method:

· this is where we run our program by calling Application's static launch() method

What is "Stage" ? -> An object that represents the window (ofour GUI) on the screen that JavaFX creates↑
Application.

for us.

· start() takes a Stage obj as a parameter because inside the method
,
we create our GUI

by putting things on the stage.

·

the Stage is the overarching ,
most broad container for our interface but we don't directly

add US components to it
...

it is essentially just the space on your screen that was

allocated for your application.

What features can we modify with the -> Low-level/basic preferences, such as the title of the window (with Stage obj . setTitle ("..."))
,
where

Stage object? it will pop-up ,
etc... SetResizeable

,
setMaximized

,

setFullscreen
,
setMinWidth/Height ,

setMaxWidth

So how do we actually add things to -> by creating a Scene object and adding it to the stage using the

the stage? stage obj . Set Scene (Scene scenes method.

What is a "Scene" object ?
-> A container for the tree of components that we're created

,
that takes a root VI

mu

component (like aPane object) as its in put.

· Scene has various constructors but
,
for example,

new Scene (Pane pane ,
int width

,
int height

creates a new scene of the given size (in pixels).

What is meant by "root VI - The idea behind JavaFX is to display UI components by putting them in "containers"

component" ? (like Pane objects) & combining these containers together to eventually end up with

a "tree" of recomponents that then make up our scene .

· the "container" that contains everything (including other containers) is the

roof VI component that is then passed into a new Scene object.

What is a "Pane" object ?
->

a VI component that acts as a "container' & that we can use to describe where other

VI components should be placed in our window

-> since they are UI-components themselves
,

Pane objs can contain other Pane objs (thus

creating the tree mentioned earlier .
)

Example of aPane subclass ?

I
-> the StackPane object - stacks its children directly on top of each other

How do Pana objects work ? -> You add VI components to a Pane as its "children" ;

pane1 . get Children() . add (button 1)

-> Pane has several subclasses that each position their children using different layouts

·

basically you create a new StackPane
,
add VI components to its list of

children
,

& then the stack Pane object does the work of displaying the children

in its subclass-specific layout .

Why might we want to have multiple - We can have our program dynamically decide (based on some interaction within it) what

to put on the stage.

Scene objects ? ↑ it wants to display on the window
,

& it can swap out which pre-curated Scene object

What is a Button object ?
-> A good example of

a basic VI component (to demonstrate how JavaFX VI component classes/objects work).

->
we can create a new button & then configure it using the various methods provided by

this Button object class
,
such as set Text (to add text) and setBackground (to set the color)

How do we display the Button after - just because a UI component was instantiated doesn't mean it will be displayed - to display it,

we've created it ? we must put the component on our "scene graph" by adding it to a pare which eventually

gets put onto the Scene & Stage of our GUI.

Example of a GUI class using public class myGr[extends Application

the components described so far ? public void start (Stage Stage) E

·

setting the stage title · Stage .
SetTitle ("Hello World !") ;

-

creating a new pane to hold the ·
StackPane pane = new StackPanel);

VI components ·
Button arisBtn : new Button () ;

·

creating a new Button component
btn

. setText ("avi") ;

↑

adding the button to the pane
· pane . get Children ()

.

add CarisBtn) ;

· Scene Scene1 = new Scene (pane
,

300,
250) ;

~

creating & setting the scene

· stage . Set Scene (Scened) ;
·

showing the stage on the screen
· stage.

Show() ;

~
the method that actually creates &

public static void main (String [Jargs) &

displays our application
· launch 1) ; 3

3

-> currently
,

there is no action associated w/ the button-nothing would happen if the user pressed it.

How do we attach actions to UI
-> Javafy provides all the Framework for visually designing a window

, but when it comes time for

components ? our program to respond to a user interacting with a component
,
it needs us to "inject" that code-

this is an example of inversion of control

-> to implement this IoC, we utilize the Observer design pattern !

· the button (or other VI piece) is the subject
,
and our response code is the observer

I
SubjO caused it (recall event context)

In the context of the observer DP
,

- Event Handler < T7 : the interface for observer objects

what framework has JavaFX provided - Button
,
Morse

,
Slider

,
etc.: the subject object.

For coding response actions to UI
->

set On Action
,

set OnKeyPressed ,
setOn DragDetected

,
etc .: the subject object's registration method

interactions ? -> Event :
an object that provides all the information on the action that occurred

, including which

· various subclasses for specific event types,

such as ActionEvant
,

MorseEvent
, DrayEvent, etc.

· different VI components have different types associated with them

How do we provide event context to the
& RECALL : In the observer DP that we looked at in Unit 12

,
we had the update() method take both

Observer objects? a subj AND an "event" ohject as parameters ,
for purposes of providing event context... however

,
JavaFX

chose to put all ofthat information into a single object (the Event obj)

=> therefore
,

handle() takes only an Event obj parameter ...
it can ask the Event object which subject UI

component caused the event , if it needs to know.

What is setOnAction ? ↑ -> a method provided by the subjo class (the VI component) that basically registers observer objects

(by taking them as a parameter) to its ActionEvents
,specifically :

·
set OnAction (EventHandler ActionEvent > e)

·

Similarly
,

setOn keypressed notifies all of its registered observers whenever a key PressedEvent occurs

-> the setOn method basically says that "When eventaurs
,
here is the

object that is going to handle/respond to it
.

"

What is EventHandler > > ? -> An interface defined by Javafy for handling different types of events

-> This is the interface that all observer objects must implement !

-> it is a generic type (RZZALL: parametric polymorphism) that each implementation observer fills in

with the specific Event object that it is

public interface EventHandler < T > Eoo "T" should be some type of Event object

public void handle (T event?;the sole method defined by EventHandler

3

What is the handled) method ? - Where we actually code the response that we want to occur when the event occurs

-> equivalent to the update() method that we learned about in Observer DP.

-> takes the event obj as a parameter because it provides event context.

So how do we actually code an since our observer "object" is only going todeused Button arisBtn = new Button() ;

event response ? once (and serves more as a function - RECALLiFunctional AvisBAn ·
SetOnAction (

(example -- >)

Programming)
,
we can use an anonymous class instead

· new EventHandler <ActionEvent) () [

of creating a whole New EventHandler <Actionrent* public void handle (ActionEvent event)

object class file !! System. out
. printin ("Hello ! ") ; 3

· 3) ;

I
avisBtn . setOnAction ((ActionEvent event) - > E

How could we make this syntax
-> Since the obs0 interface only defines one method Chandles))

,
we can use a lambda

even tighter ? expression (RECALL) :

System.out. printin ("Hello !") ;

3) ;
- Scene Graph-

What is the "scene graph" ? 1-a tree of user interface components that is attached to aScene object as the root.

· typically ,
this root will be aPane object.

-> There are several classes related to the scene graph : Node
,
Parent

, Region ,
and Pane

What is Node ? -> the parent/"base" class of every component in the scene graph-aka all UI component

classes

· Button
,

Pane
,

Label
,
Slider

,
etc .

are all subclasses of Node
.SummNode as a parameter ,

because the method is not specific to any one UI comp,
but can work

with any

·

we can just pass in the "type" of Node object Lake the UIcomp.

) that we want to

What is Parent ? -> A subclass of Node that is the parent class of all of the UI-components which can contain

children (subcomponents) -

Such as the Pane class.

->

represents an internal node of the scene graph

What is Region ?
-> a subclass of Parent & the parent class of all Parent VI-components that can be

styled using JavaFX's implementation of Cascading Style Sheets (CSS)
.

(Review) What is Pane ? -> a subclass of Region that is the parent class of all Ragion VI-comps that allow adding
and removing children

,
and that specify how these children should be positioned on the screen.

-GraFX Layout Panes-

What are the 8 built-in layout
· Border Pane · VBox · GridPane · Tile Pane

subclasses of Pane ? · HBox
· StackPane · Flow Pane · AnchorPane

-> Each pane provides a different scheme for positioning its children on the screen.

What does BorderPane do ? -> A Pare that can contain exactly & children. Top

-> There are 3 regions where children can be positioned :

Left Center Right
-> You can add one child to each area

Bottom
->

Any area that doesn't get a child shrinks away & gets

absorbed by the surrounding areas (when you display the window

->

Any area that gets left over after children have been put in & the amount of spacethey can take

up has been maximized
, goes into C - it will expand (horizontally or vertically) as

necessary to take up any extra space .

What does HBox do ?

I
-> Children are positioned horizontally - either left-to-right or right-to-left - in the order

that they are added to the Pane.

-> Any extra unused space remains unfilled (aka white space in the window display
What does VBox do ? ->

same as HBox but vertically (either top-to-bottom or bottum-to-top)

-> the default For HBox & VBox is left-to-R & top-to-B ,
but this behavior is

configurable.

What does StackPane do? -> children are stacked on top of each other& centered in the window.

What does GridPane do ? -> children are positioned in a grid with rows & columns
,

& the sizes of the rows & columns

is calculated dynamically in order to accommodate the widest or tallest child in a row or

column.

What does Flow Pane do ? -> children are positioned left-to-right
,
top-to-bottom, starting in the upper leftcorner.

- children wrap to the next row (or column) when the edge is reached.

What does TilePane do ?
->

same as Flow Pane except every child's space ("File") is forced to be the same size.

-> to do this
,
it makes every

tile to be the size of the biggest child .

What does AnchorPane do ? ↑ -> Children are anchored" to the pane at a position respective to one of the edges of the

window (top ,
bottom

,
left

,
right,

or centers

->

they can be anchored at absolute positions (like a co-ordinate point) or relative

positions (like "25 % away from the left edge" or "20 pixels down from the topedge").
-> The most flexible of all the layout panes .

- JavaFX VI components -

What are some basic useful -> Label - for displaying text
->

CheckBox - a checkbox

VI components in JavaFX ? -> Button -

a clickable button -> Rectangle - a colored rectangle

-> ToggleButton-rugylable button -> Circle -

a colored circle

-> TextField - a text input box -> Slider-a slider bar

-> ImageView - for displaying an image

What is the common programming

I
->To enforce a separation of style code from content code

Style in JavaFX

pattern/approachFor OUIs ?
-> This principle emerged from & was influenced by web programming/development principles.

What is "content" code ?
->

Defining what gets displayed : what UI components we will have
,

where we will place them,

What layout we will use
,
etc.

-> This is the code that goes in our App (extending Application) class File; setting the scene etc.

What is "style" code ? - Defining how to display the program contents - colors
,
fonts

, padding ,margins ,
etc...

how we want everything to actually look

-> If I create & run a programwo any style ,
it will just look superugly & probably won't

make any sense to the user

How do we separate style code
-> We are going to put the code that "declares" our style in a completely separate file (or

in Java/with JavaFX ? Set of files) called style sheets
.

-> In a Maven project using JavaFX
,

the ..

·

content code goes in /src/main/javal... (the specific app class inside the java folder)

·

style code goes
in /src/main/resources/style ...

What is a style sheet ? -> A file where we declare certain style rules/configurations , grouped into style classes
,

that our UI components can then adopt/"subscribe to
"

-> We use these in order to get our UI components to do how we want them to

-> a set of style rules can be associated with other structures as well
, but for the purposes of

↑
-> The stylesheet files are css files (rather thanjava like usual classes)

this class
,

we will enforce "styling by class" & will only need to group rules into classes.

What language do the style ->

Cascading Style Sheets (CSS)
,
which is a design language used to style

Snects use ? VI components in style sheets
.

-> not coded in Java

What is a style class ? ->
a designated block of code (that is given its own name) inside a style sheet that defines

a set of style configurations .

I
· layout o · the name of the style class

,"layout",
2

-

fx-background-color :*fuP80 ;
indicated by a dot .

-

Ex-font-family : Arial
,

sans-serif ;
-

Fx-font-weight : bold ;
2. JavaFX defines different identifiers

,
such as

- Ex-font-size : 12 px ; background-color ,
font-weight, etc. as

-

fx-padding : 10px ; settings that can be set for its VI components

3 · put a colon (:) after the identifier name.

· scoreboard E
2.

All identifier statements begin with "-Ex
.

"

- Ex-alignment : center-right ;
-

Ex-spacing : 10px ;
· Oneess file can define multiple "style

3 classes" for multiple components.

Example of a style sheet ?

↑
main . ess

*

↳
We input the file path from the resource

How do we get our VI-components ->

every Node Laka every Ul-compl contains a list called by the method . getStyleClass)),

to incorporate a style class ? bl it can be associated with multiple style classes (not limited to one) that can

all be applied at once

-> Attach a style class to a Node using W . getStyleClass . add ("name of style class")

How do
you attach a style config.

-> We have to associate the overall scene with the particular style sheet that we are using,

to aScene object ? So instead of getStyleclass , we use :

Scenez . get Style Sheets , add "StyleSheet]/main .
ess") ;

subfolder

What happens when you add a style -> Although Pane objects are just containers that won't be affected by most style rules (like

class to a Pane ? Font & etc .
)

,
we can associate them with a style class if we want all of its declared

children to adopt that style into their list of style classes.

What happens if a VI-component
-> If a UI-component has its own specific style rules that clash with those dictated

has contradictingkompeting style by its parent Pane
,

the VI-Lump's own rules take precedence & overwrite the pane's.

rules ? -> If the
competing settings are on the same "level" (coming from the same Pane,

Scine
,

or other VI-comp's getStyle Class list) : JavaFX has a well-defined

Set of rules that decides which style settings get prioritized.

Model-View-Controller

I
as a whole .

= crucial to the definition of MVC

What is Model View Conteller ? -> A software design pattern used for structuring and organizing programs
for applications with a user interface (GUIs] .

-> MVC is an application - level pattern : it provides the architecture for an application

-> MVC started in the 70s-80s when GUIs were first developed ,
& has remained

popular ever since.

-> MVC can be used in desktop
,

mobile
,

and web applications.

What other DP does Model View -> Observer ! MV2 is effectively a series of observer relationships between different

Controller employ ? parts of an application that are each responsible for specific aspects of an

event-based GUI program.

What is the big idea behind
-> To view an application as having 3 parts :

1.
muc ? ↑ 3 .

The state of the application - the actual information that our app is trying to

store & manipulate
Lo

The way that our application looks) is presented to the user
,

& how the user

interacts with it.

A way to interpret & translate the user interactions (component #2) into

manipulations of the underlying application State (component #2) - This is the

idea that MVC introduces ; to separate an app's VI code from its state management

code

How does MVC execute this idea?T By having each of these 3 components have their own separate ,
well-defined

interfaces and responsibilities.

How are the Model
,

View
,

& -> The Model classes and View classes are decoupled from one another (no inheritance or

Controller each related to each other direct references to class names)
,
and the Controller provides the level of interaction

between the two so that they can remain independent of one another.

-> the exact way that the components are related to each other depends on the pattern

being used - the classic MVC approach or the "alternate" approach

Model View

(application State) luser interface

& knows how the application & knows how to show the
works

,but not how to

show it to the user ↑ ↑ application to the user
,
but not how

the app works.
Controller

levent handler)

& translates View events into

Model commands.

decoupling the View from the

I
having to change anything about the Model .

What is the advantage of -> We can then replace the "View" component of our app seamlessly ,
without

Model ? -> This is useful because we can make different Views that are compatible for

specific to different VIS-like an iPad versus a phone ,
a computer ,

an

audio-only interface, etc etc

What is an example application -> To understand MVC
,

let's consider trying to program a GUS for the game 2018 (the swipey game

of MVC ? - notes referring to the example are in purple.

- The Model-

what is the "Model" ? -> the classes/portion of the program that stores the application state (the current

status of the application's operations) & knows how the app works

-> The Model classless are usually subject objects that get observed
,

because the

rest of the application needs to know when states have changed.

->

provides algorithms for data manipulation ;
· the numbers that should be displayed on the board

·

the current & best score of the player

· whether a given tile is empty ,
& If not then what number it contains

· The actual aly for combining & adding new files

rest of the program
?

↑
like

,
if

you were to create its objects & run its methods/algorithms in the Main file
,
itshould

· And more!

Is the Model independent from the-Yes ! The Model classes should actually be able to work without a user interface at all-

work as intended

· for EX
,

UECALL AOL(Adventure) -

we were able to "play" the game we created by running

our program in Main
, although there was no visual representation of it (but we could add one

-> the Model object doesn't assume or know anything about how it might be used (like on a Ullevel)

What are the main responsibilities
2)

To encapsulate the application state (in private fields

of the Model object ? · int[JC] board · int high Score

· int score

2)
To expose methods for accessing the states (Controller will use these

· get Tile (intx
, inty) ·

is GameOver()

get Current Score ()
· get BestScore()

I
state - for ex

,
SwipeUp2) :

What are the I main responsibilities 3)
To expose methods for modifying the states (Controller will use these

of the Model object ? · swipeLeft)) ·

swipe Up)) · reset ()

(continued)
· swipeRight) ·

swipeDown()

-> the implementation of these methods is where the Model "modifies itself" & updates its

comparing if the 2 tiles match
,
if so "combining" them by changing the values of the respective

cells in board
,
as well as updating score

,
etc.

4)
To notify its observers when a state has changed (like the game being over

,
a player's

turn ending
, change in the score

,
etc.)

· do this with a notify Observers) method.

- The View-

What is "View" ? -> The part of the
program that knows how the application looks

-> creates & displays the user interface

-> The package with View classes must be the place where we have all of our

JavaFX code (since JavaFX is our Ul library)

What are the 3 responsibilitiesTo create & generate the user interface
, using the current state/data values

of the View object ? encapsulated in the Model.

How does the View

↑ 1)

-

by acting as an observer object
, observing either the Model or the Controller /depending

2)
To refresh the UI whenever the application's state changes.

refresh the VI ? on which approach we are using) for state changes and then updating how it looks

accordingly
· for example, if the score changes ,

the View should be notified of this change sothat it

can update the number being displayed on the screen as the "User Score" .

3)
To observe for user interactions & report them to the Controller (by calling its methods).

Why must the View report -> The View must report all user interactions to the Controller so that it can interpret

user interactions to the those interactions in terms of what they mean for the application ,
and then execute the

Controller ? appropriate actions to update the application state (aka the Model)
,

as well as update the

View itself
,
if needed.

What is the suggested pattern -> Define an interface for all of our View classes that contains a renders) method :

for View classes ? public interface EXComponent
: the renders method generates and returns

Parent render() ; a scene graph representing the UI tree for

3 the view.

-> render() usually returns a Pane object " RELALL that Pane is a subclass of Parent

-> inside of the render() implementation is where we will actually create the UI JavaFX

components and add them to our Pane container.

I
& then sort of render them all into a collection (a"View" that contains all of those smaller "views",

What is the
purpose of this -> We can build up our final GUI (the one that gets displayed to the user via the Stage

-> We can create "higher-level" View component classes that encapsulate several other

View classes by asking them to "render themselves" (with the renders method

arranged in a specific way

-

Essentially breaking our user interface into a logical hierarchy ,
& then creating

a View component class for each level/part of that hierarchy - each of which

knowing how to render itself-and combining them to build up our GUI

suggested pattern ?

↑
and Scene) out of multiple View classes ;

this View component knows

What is the 2nd thing that -> in addition to rendering themselves
,
all View component classes (even lower-level

View classes must do ?
ones that get encapsulated into higher level ones) need to encapsulate a reference

to theController object in order to ful fill responsibility #3

· this is how the connection between View & Controller gets made !

· done in the View class' constructor .

->the View interface
Example of a basic View

public class ButtonView implements FX Component (see prev pages

component class ?
private Controller controller ;

->

encapsulating reference to its

associated controller object
public ButtonView (Controllar controller) [

via the constructor

this controller = controller ; 3

public Parent render()Ea ·

how to render itself by
VBox layout = new VBox(); creating a VBox (recall Pane

subclasses) layout , putting
a button in it

,
& returning

Button button = new Button ("click me !")"
the layout

button
.
setOnAction () Action Event event) - > E the uI event of the button

· being clicked is forwarded
Controller. handleClick() ; to the controller by calling

3) ; controller's handleclick()

layout. getChildren. add (button) ; method to respond to the event.

return layout; · · renders) returns the generated

33
scene graph.

-> This component is simply just a VBox with a button ,
but it can be put

inside of another component that contains it and other similar small components to

create a compounded component

· the compounded component can be put into another one
,
and so on... this

is how we build up our Final GUI-a tree of many View components.

Example of a compounded View

I
public class CompoundView implements Excomponent

component & ties them to the

component class ? private Controller controller ; This component is a combo of

private #xComponent leftPanel ; 2 other View components... creates

private Excomponent rightPanel ; a new LeftPanel & RightPanel

public Compound View (Controller controller) same Controller object that it

this controller-controller ;

this
.
lef Panel = new LeftPanel (controller) ;

this. right Panel = new RightPanel (controller) ;↑J
⑤

*

is tied to
.

3 -

public Parent render() E

HBOX layout = new HBox 2) ; CompoundView renders itself by

layout- getChildren()
.

add (leftPanel . render()) ; putting those encapsulated

layout. getChildren 2)
.
add (right Panel. render()) ; View components into a layout ,

return layout ;
and asking them to render

33 themselves

· Since this component doesn't create any new UI components & simply combines other

View classes
,
it doesn't need to directly forward any interactions to the Controller-that

has already been taken care of by the internal components.

- The Controller-

What is the "Controller" ? -> the part of our program
that handles user interactions by calling

appropriate methods from the Model classes.

-> The Controller is the"brains" of the operation - it contains all of the higher-level

logic about how to actually use the Model's methods in a meaningful way.

-> it bridges the gap between the low-level interactions with the smaller low-level View

components ,
& what they mean at that moment and given the current state of the app.

-> The Controller consists of methods that translate user interaction events

into commands for the Model.

2
What is the process/event * user interaction occurs on the GUI and the View component reports this

sequence through which the occurence to the Controller by calling one of its methods.

Controller gets used to report · user swiped an 8 tile unto another 8 tile

updates to the Model ?
2 .

Controller interprets that interaction into what it means in the context of the app &

the application state aka translates it into manipulations of the underlying Model.

· the user is trying to combine the tiles
,

& wants a new combined 16 file to

appear

I
by calling its methods so that it can update itself

.

"

3
·

Controller interacts with the Model to execute these interpreted actions

· controller calls Model's SwipeUp1) method - which may take

a board co-ord as a parameter (like the co-ord of the tile that

was swiped to -

this is just a rough abstract example

· The actual job of determining whether the 2 tiles are the same
, combining them,

updating the board to have a
1 where there used to be an

8
, increasing

the user score etc... is all done in the Model's method implementation-

Controller simply has to set off the spark to let Model know what has

happened.

What does the Controller class -> must encapsulate a reference to the Model so that it can "manipulate" it & call

need to have ? its methods !

public class Controllers

Example of a Controller class ? private Model model ;

public Controller (Model modell-encapsulating a reference↑ 3

case UP :

pages back

to the Model
,via constructor

this. model-model ;

public void handleSwipe (Direction dir) So this is the method that gets

Switch (dir)E
called in aView component class

When a user interaction occurs

model
. SwipeUp1) ; (like "handle Click()" from ex1

case DOWN :

model . SwipeDown() ;

case LEFT :

model . Swipeleft();
· the controller contains application

Case RIGHT : logic to determineI call the

model . Swipe Right() ; appropriate Model method based

on the interaction that occurred .

break ;

333

What is the event sequence through -> This sequence differs based on which approach of MVC we are using - classic

which the controller gets used to or alternate
. We will discuss this in a sea.

report updates to the View ?

I
application state with public methods scene graph)

Recap : What is the role Model -> application Controller -> event View- user

of the Model
,
View

,
& State handler interface

Controller !
·

private fields storing
· Handles user events · Renders VI (produces a

M

Y
· getter methods r · Controls the Model in Displays VI is an

exposing appstate response to events Application subclass)

· modifier methods to · Forwards UI events to

change the state Controller

· notifying observers Refreshes the UI
upon

when state changes Model State change
L

RECALL: JavaFX

- Classic MVC versus Alternate Mrc-

What do classic & alternate + The strategy for sending information from the View to the Model is the same

mrc have in common ? for all MVC approaches- see the red-highlighted notes under "Controller"

on page 128

· indicated by the red arrows

↑
->

notified of state changes (which
,

as we know
,
are inflicted upon Model by Controller),

-> But the strategy for reporting Model updates to the View is where these I

approaches deviate.

What is the classic MVC -> indicated by the green arrows

approach ? View components register themselves as Observers of the Model so that they can be
-

and so that they can then update themselves Laka "refresh the UI") to reflect these changes.

How do the View components knowt Since View is an observer of Model
,
it gets notified anytime a state change occurs . Knowing this,

which changes to reflect ? it can then get the specifics on which states have changed by calling the Model's getter

methods (like in the View's update() method (RECALL : Observer DPI

· Alternatively
,

we can design the Model's notify2) and the View's update() methods

to pass in parameters that specify the state change (RILALL: Event Context)
...

this type
of small design choice is up to us in terms of how to implement it.

Overview of the flow of information
↑

View calls Controller methods to

View
handle user interactions.

-Controller
in a classic MVC pattern ?

r
Z↑

View calls Model getter Controller interprets user

3 methods to get details interactions & then calls
Model notifies its on the state change &

Model setter methods to
observer

, View
, to inform

refresh its VI .

change the Model in response.
it of the state change W

&
Model

I
&

order to update it.

Controller contains a referenceWhat does the setup for a Model model = new Model (C ; to the model so that it can

classic MVC look like ? Controller controller = new Controller (model); so interact with the Model in

View view = new View (controller
,
model) ;

· ·

View components know about both

the controller AND the model so it

model . add Observer (view) ; can forward interaction events &

· add view as an observer of the model obj
receive

app state change notifications
,

it encapsulates a reference to respectively.

What is the alternate MVC - The Model and the View are fully decoupled - they don't even know that the other exists
.

approach ? -> The Controller sits in between them & provides View with methods to retrieve info from the Model .

Model -> application Controller -> event View- user

State handler interface

·
private fields storing

· Handles user events

↑
· Renders VI (produces a

application state with public methods

↑
scene graph)

· getter methods
,

· Controls the Model in Displays VI is an

exposing appstate response to events Application subclass)

in the alternate MVC ?

↑
2

observer of Controller

Y J· modifier methods to State getter methods
L · Forwards UI events to

change the state expose the state tothe View Controller

· notifying observers · Forwards updates from · Refreshes the UI
upon& &

when state changes the Model to the View

I

Model State change
I

What are the observer relationships -> The View component only has access to the Controller component
,

& registers as an

-> Controller registers as an observer of Model (instead of View) & is notified

anytime an application state change occurs

How does View get informed "State change occurs in Model

of state changes ?
Model notifies Controller of the occurrence

3.
Controller calls Model's "State exposing" (getter) methods to get event context

on the change that occurred

↓. Controller
,
as a subject object ,

then turns around and notifies View of the state

change occurrence it was just informed of ! ("Forwarding the updates") .

5. Controller contains its own "State exposing" (getter) methods that essentially
"duplicate" those of the Model (it gets the data to fill these methods using Model's

getter methods
.)

6.
View calls the Controller's gatter methods for event context

,
& then refreshes its

U2 with respect to the app state changes .

information in an alternate

I
M 6

to access application

3
Model notifies Controller

q

Overview of the flow of Dw Model
-

View calls Controller's when application state

MVC pattern ? "duplicate" getter methods changes

·Controller's S methods to access & Controller handles user

Controller notifies app state

methods to
View when app

in Fo
events by calling

handle user state changes.
Model's setter methods .

interactions
. L

&

Controller handles
What does the setup for the Model model = new Model (i ; ·

UI events by calling

alternate MVC look like ?
Controller observes

Controller controller = new Controller (model) ; it can update its

application state .)

the alternate MVC approach ?

↑
↑

View calls
state info .

Controller

Model's getter

Model methods (so

For state o model
,

add Observer (controller) ;
changes on the

Model

View observes fora View view = new View (controller) ;a
· View forwards VI events

state changes on to the Controller

the Controller
·Controller. add Observer (view) ;

-> theController is effectively "forwarding" the change that it is notified about
,

to the View that

is observing it.

What is the other way
to execute2 > We could even go so far as to not hare the View observe the Controller at all

,
&

instead have the Controller respond to event updates from the Model by turning around

and directly manipulating the View itself ! aka Controller completely in charge.

9

I
Time

&

Concurrent Programmin
What is the sequential computing

-> A
way

of modeling your computation such that
,
when a series of computations are executed

model ! one at a time
,

each computation must finish before the next can begin.

task1() task 22) task 32)

What is the concurrent computing
-> When a series of computations are executed during overlapping time periods.

model ?
task 1()

task2()

task3()

&

Time

-> There are two ways that a program can exhibit concurrent computing to have

multiple actions be executed at the same time :

·
in parallel : actually being able to execute multiple tasks simultaneously;

aka parallel programming
· by context switching : The computer is only actually performing one action/ task at an time ,

but it switches back & forth between them Crapidly),↑
M

so that they appear to both be making progress
at the same time;

kind of a "false appearance" of concurrency
because there

is no actual increase in performance or decrease

in time spent .

What is the Parallel Computing - When multiple tasks can simultaneously be executed on separate processing
Model ! elements

-> "parallel computing/programming" is sort of a branch/type of concurrent

What are the two forms of 2

Parallel programming
concurrent computing ? 2

asynchronous programming

What is a "model of programming" ?
-> a

way of programming a "model of computation"

-> You can mix & match these
, but ultimately you are limited by your

resource - for ex
,

even if you implement an asynchronous programming model on a sequential computer,

the program will never actually go any
faster

,

because it is still only doing one

thing at a
time.

I
to go execute the code in the other file/method.

What is synchronous programming ? - A model of programming where a task
may

be started
,

and the
program

has

to wait for it to complete before continuing to run-

· this is the "normal"
way

that we have thought about /considered our programs

thus far-for ex
, calling a method : it stops execution of the current file

task) method task
taski) method

executed↑ completed

main program
Main program

What is asynchronous
- A model of

programming where a task may be started
,
but the

programming ? program continues on without waiting for it to complete

· the program can later coordinate with that task (to see if its

complete , get its result
,

etc.)·What is "Moore's Law" ? -> This dude in the 70s realized that the number of transistors that could be fit on a

processor-which ,
in that time period ,

was directly related to how fast it

could do computation- was increasing at a very specific rate - it was

doubling every 18 months .

-> Moore's law :

Computing speed (a . K . a . the speed of the fastest/most recent

computer developed by humanity thus far) doubles every
18

months.

-Shockingly
,
this law has held true for the last10 years (and counting) !

What advancements in technology
-> in the 1970s : lithographic techniques for etching silicon improved (so transistors

have driven Moore's law ? got smaller)
,
but this technique was eventually exhausted (how much

smaller could they possibly be
, yk...

-> in the 1980s :
we were able to make processors faster (in terms of time) but this made

computers really hot be they generated a lot of heat (rocket Maclol)

so this technique was also eventually exhausted .

-> in the 2000s : the multicore revolution !

What is the multicore revolution? -> instead of designing new processors that were faster than all of the ones before it,

we started architecting a larger number of smaller processors that are like

mini "parallel" computers
,
each of which had smaller zores that were then lightly

integrated into a shared memory
and cache .

-> aka
,

we made our computers Faster by allowing them to do more than one

thing at a time

I
->

is because we are developing increasing parallelism in our designs.

-> the multicore revolution is what is driving Moore's law today;
the reason why we continously have increases in computer performance

· can be up to 2000 cores in one processor (probs even more

Okay SO... why do we
it is the kay to why our (Society's computers get any faster !

care about concurrent and -> Multicore can only increase computer performance if we can find ways to

parallel programming? parallelize our tasks
.

- Parallel Programming-
In what situations can multicore easily -> for a computers completely independent processes ,

where there are no data or logic
be used to increase performance ? dependencies, or aggregating data operations.

Example? -> A laptop and its applications : Chrome & Spotify & Word & the operating system

>
can all run at the same time because the laptop can have a separate core running each

program.

How was this done before multicore ? -> You could still run multiple programs
at the same time

,

but they weren't actually

being run in parallel-the operating system was just rapidly switching between the

multiple tasks
, giving a "false appearance" of concurrency ... See He

miching notes & pages ago

·

no increase in performance because no time is saved
.
The overall time it takes

performance ?
&

↑
-> With one program ,

it is more complicated to find
ways to "parallelize the tasks" ;

is still going
to be the sum of the time it takes to run each program individually.

When is it more challenging to> When we are interested in improving the performance ofe particular program
(not as

integrate multicore for increasing a part of a collection of programs)

being able to get one part of the program started while another continues to run and getting

them to coordinate/exchange answers etc. when its done
,

for example.

- threads and multithreading
What is multithreading ?

↑
->This idea of writing a program that is operating in more than one place at a time

what is a "thread" ? -> an abstraction for executing a program
-- to execute

any program , your operating
system creates ahumd.

What information is - 3 things :

encapsulated in a thread ?
1

Instruction Pointer : the current point of execution.

· tells us where we are in the program
.

I
progress through the program.

· holds the structure of "call frames" that build up as we

· tells us where we have to go back to when we return from a

method (RECALL : exception handling ; see notes on call stack

1 bg .
58)

Memory : the contents of the memory (objects and etc .)
, including the heap .

threads ? ↑
2-

Call Stack : which methods are currently executing

-> basically
,

a "thread of computation" is comprised of where you are in the program,

how
you got there

,
and the current state of the memory.

How are these components represented -> Each thread has a separate instruction pointer , separate call stack
,

and

in a multithreaded program ? a shared memory (they all share the same heap

How do we communicate between - by coordinating the use of shared
memory ,

since that is the one thing they have in

common .

What is the "Runnable"

I
-> the key mechanism to writing multithreaded programs

in Java.

Java Support for Concurrent Parallel Programming

interface (and object) ? -> the Runnable interface is built into Jara and defines objects that represent

a task that can be performed.

· Runnable objects are basically "mini-programs" -

an execution of a certain

task that can be run by a thread.

-> the Main class in our Java programs
is actually public interface Runnable E

a Runnable object !
· void run() ;

3

How do we execute the task defined -> by calling the object's runc' method - the only method defined by the interface.

by a Runnable object ?
· run() contains all the code that we want executed. It doesn't take any

parameters or return any results.

-> (RECALL : Lambda expressions) Since Runnable() only defines one method
,
it can be

instantiated using a lambda expression !

Example of a "Runnable" (inside of some other class)

object ? public static void main (String[] angs) &↑
· on 3

fig . I

lambda expression

Runnable task1 =

() - E · created using a

for (inti = 0 ; i < 10 ; i + +)

System out-printin (i + 2) ;

33 ;

-> Just creating a Runnable object doesn't do anything - if we ran the class that this

code" is inside of right now
, nothing world happen (or print). We've simply created

the object & assigned it to the variable" task I"

Which model of programming are
- Both ! Runnables can be used either synchronouslyOR asynchronously ,

Runnable objects used in ?
hypothetically.

How do we run a Runnable object
->

by simply calling the method (runs) on that object ,
like

you would with any other object.

synchronously ? -> add the following lines of code to Figure 1 :

7 The console will print "we are
... 10"Example? System. out. print In ("We are printing 1 to 10") ; Followed by the print statements

task1 .
runk) ; made inside of task I

,
and finally

,

System. out. printin ("Done !") ;
"Done"

-> There is no concurrency here : we simply created a Runnable object and executed

its run() method .

-> The
program is still only doing one thing at a time.

object asynchronously ?

I
->

Using Java's built-in thread class !
How do we use a Runnable

What is theThread object ? -> It represents a thread of execution ; it allows you to create new threads that

can then be run at the same time ! Hence
, asynchronous programming.

-> When wanting to multithread
,

we always start inwith one "main" thread that

always starts in our main method... this is where our main program starts

and where we start new threads
,
if we want to

How do we create and run a -> When we create a new thread object ,
it needs to be told what to do . Thus,

new Thread object ? the constructor takes a Runnable object as a parameter.

· Thread thread2 = new Thread (task 1);

-> NOTE :
multiple Thread objects CAN use the same Runnable object - it would just be 2

independent executions of the same task.

-> To start/run the thread (O thus begin execution of the code inside the Runnable obj),

call the thread's "Start()" method

-> Once we have called start()
,
our

program is effectively running in 2 places

object asynchronously ?

↑ · thread 1
. Start2) ;

*

Runnable task1 =

at the same timeCaka concurrently and asynchronously) !
· the main thread continues to execute

.

Meanwhile
, your operating system and the

J M conspire to create a second thread of control with its own stack

·the second thread begins inside of the Runnable obj-that is it's version of "main"

Example of using a Runnable public static void main (String[] angs) &

() - E

At this line
,
the new thread for (inti = 0 ; i < 10 ; i + +)

branches off and starts System out-printin (i + 2) ;

executing the run method 33 ;

of its given Runnable object - System. out . printin ("We are printing 1 to 10") ;

at the same time as the restThread thread 1 = new Thread (task 1);

of the
program.

· thread1 . Start2) ;

System. out. printin ("Donel") ; Fig
. 2

So what order will the statements -> basically ,
we can't make any assumptions about how fast the offshoot threads are

print in ? or which one will finish first
.

· if there are multiple threads
, we also can't make assumptions about the order in which

each of the threads' tasks will occur in respect to one another.

-> Usually (but this is NOTarule)
,

the print statement in the main method ("Done! "I will

end up getting executed first ...
but we can't just assume this.

multiple threads ?

I
() - E

Fig . 3

-Four main thread created thread 1 and

Example to demonstrate public static void main (String[] angs) &

↑he order of execution with Runnable taskO

& for (inti = 0 ; i < 10 ; i + +) started it ; new execution has begun
at the "-"

System out-printin (i) ;

System. outprintin (" ") ;
↳

new execution has begun at "-"
... running

samezode as thread2 ,
but completely

33 ; independently

Thread thread 1 = new Thread (taskO)
;)

thread 1 .
Start2) ;

Thread thread 2 = new Thread(tasko);) i

The main thread continues on its own

thread2 .
Start() ;

way as well, right after starting↑ System. out . printin ("Done ! ") ; the other threads.

What order will these - Not garranteed to be the same every time
,

but one possible output :

statements print? Done !

80212328354367869789

- The main thread immediately goes off to print its statement before the other tasks even have

a chance to

- However
,

the timing and order of each offshoot thread isn't consistent in any way. Its just

sort of random.

But what if we want the Main- we can accomplish this using the Thread object's join() method !

thread to wait for the -> waiting for a previously spawned task to finish is a common thread coordinating operation.

other threads to finish? · EX :
think of sending I thread to "mixdry ingredients" and one to "mix wet ingredients"..

main method cannot "mix wet & dry ingredients" until those I threads have finished

How does the join() method -> When it reaches a line of code that calls join) on one of its lobviously
work ? already declared) offshoot threads

,
the main method parses/stops

execution until the thread is done executing the code in its Runnable object.

Example? -> addingthe following lines toFigure 3 :

thread 1
. join() ; · Main) pauses until thread I is complete...

· thread 2
. joint;

thread2 still runs & is completely unaffected

by this line.

· After this line has given Main) the go-ahead to continue
,

it now "parses" until

thread 2 is complete .

thread21) might have already been long-finished by this point

(in which case the join() call will signal to Main)) that it can keep running) ,
but

· join2) basically functions as a stopper/checkpoint to make sure that Main doesn't

continue until the thread's task is done.

RECALL : What is "join()" ?

I
->Process of waiting for a previously spawned thread to finish its job before continuing your main program.

Java Support : Mechanisms for Thread Coordination

-> join)) is the simplest/most basic form of thread coordination.

What is a race condition ? -> A segment of concurrent code where the timing of the execution (of the 2 or more

pieces that are running concurrently) affects the result.

When do race conditions occur ? - When 2 or more threads are actively sharing memory
- aka reading from or

writing to the same object.

·

"Writing to" :

manipulating , using ,
or otherwise modifying the same obj

·

"reading from" : retrieving state info from the object
-> When this happens ,

we have a race condition because we have to make sure that

2 threads aren't manipulating the same object at the same time ,

What can go wrong when I threads -> Which thread's mutation of the object will actually be in effect? We don't know,

write to"an object at the same time? because it depends on which thread executes first
.

· could end up with undesirable results.

What can go wrong when 2 threads -> If one thread reads a field but then another thread overwrites it
,

the value read by
"read from"an object at the same time? The one thread is wrong Laka stale values) because it doesn't see the modification made

by the other thread.

What is an example
to demonstrate ->

imagine aCounter class that increments & decrements an integer :↑
public void addOne()E 2. gets the current value of num

a race condition issue ? public class Counter E Fig . 1

private int num ; encapsulates an integer,
which it starts at

public Counter () 8

num = 0;

3 These lines of code actually each perform 3 operations !

(this is important) :

2. adds/subtracts 1 from it
num = getValvel) + 1 ; 30

3. effectively sets the value by assigning
public void subtractone() E the new decremented/incremented number

num = getValue() - 1 ; 30 as the value of the private field num

when addOne() or subtractOne() is

public int getValue() E &called
, the state of the class changes

return num ;

33

Ok
,
so how will we use threads -> In the main method

, we will have 2 threads that both use the sameCounter object :

with this example class ? Counter counter = new Counter 2) ;
Fig. 2

Thread thread2 = new Thread (1)-> 50 · One thread increments the counter

for (inti = 0 ; :1000 ; i ++) E
100

, 000 times

counter
.
addOnel) ; 3

35i (continued on next page)

I
counter

. SubtractOne() ; 3

Thread thread = new Thread (1) -> E - the other thread decrements the

for (inti = 0 ; :1000 ; i ++) E counter 100
, 000 times

3) ;

thread 1
.
Start() ;

·

starting both threads simultaneously
thread 2

. Start () ;

thread 1
.join 2) ; · waiting for both threads to be done,

thread 2 . join (1 ; and then printing the value of num

System, out. printin (counter
· getValue()) ;

3

What will be printed by the"Logically ,
we should want the system to print &

,
since we added & subtracted 100

,
000 from

system? the value
.

-> However
,

we actually end up with a different number every time we run the program !

- 30
,
65% - 2

,
7825293.

Why does this happen ? -> Imagine that num = O and addOnez) and Subtractonel) are called concurrently :

Thread 1↑
3

sets num equal to 1

--

~

Gets the num
, which it also finds to be O

1 -

Gets the num
,
which is

2
adds 1 to that number Thread 2

-

because it began at the same time as

thread I (not after !)
2

subtracts I

3.
sets num equal to 0-1 = -I

·Which one of these is going to happen is a race condition ! depending on

which thread "wins" the race-aka executes first num will either be

- 2 or I (if we were to call
. getValue() at this point)

-> basically
,
only one of the thread's actions takes effect at a time... and there's no

way to know which . It's just up to chance.

Conclusion : why don't we want I threads
-

because they will both start with the same value
, try to modify it in different

writing to one object simultaneously ? ways ,
& then we have an unspecified race condition for what will actually end up

happening.

How do we avoid these unspecified
-> By marking specific methods (of a class) as synchronous ,

aka making them

race conditions ? "mutually exclusive"
... using the "synchronized" keyword.

·

By marking an object's methods as synchronized ,
we are saying thatone

of those methods can be executed at the same time (like by multiple threads).

I
-> the Keyword is placed in front of a class' method definitions :

What Java feature do we use -> The "synchronized" Keyword ,
which is Java's syntactic sugar (RECALL: for - each loops)

to enforce mutual exclusion ? for
every object's mutual exclusivity locks (more on this chead)

public class Counter E

private int num ; -> Java ensures that no two synchronized

public Counter () methods of a given instance of the

num = 0 ; 3
class will ever be executed at the

public synchronized void addOne)E same time by different threads.

num = getValvel) + 2 ; 3↑J W ↑
public synchronized voidSubtractOne() E

num = getValue() - 1 ; 3

public synchronized int getValue() E

return num ; 33

What does it mean that synchronization - Basically
,

this mutual exclusion isn't applied to the class as a whole
,

but to each

is "object-specific" ? specific instance of the class ;

· if we have I instantiated Counter objects,
for example

,
then it is okay

to have a thread

inside of addone2) for one of the objects and simultaneously another thread in subtractOne

of the other object... but I threads could not be occupying both of those met

in a shared object at the same time.

What does thread execution -> When I threads want to be in a synchronized method at the same time :

look like with synchronized
-.

Whichever thread started its action/ got to the method first will be allowed to

methods ? continue into the method.

2.
The thread that gets there second will be suspended

,
told to sit and wait

3.

The second thread will enter the method as soon as the first thread has left it
.

-> refer to the following part of Figure 2 :
A - p

· thread1 calls addOne() (in its Runnable thread 1
.
Start() ;

object) and thread 2 calls subtractones)
thread 2

.
Start() ;

...
but since these I methods have been thread 1

.join 2) ;
marked as mutually exclusive ("synchronized")

, thread 2 . join(I ;

they will not execute simultaneously
. System. out . printin (counter

· getValue()) ;
What will be printed by the -> since none of the addOne2) or subtractonel) 3

System ? calls happened at the same time
,
there is never a race condition ! every addOne2)

call is matched up' with a subtractonel) call
,

so the system always prints 0.

I
it does result in some overhead in terms of speed/performance.

Does "synchronizing" methods -> Since setting up these locks of mutual exclusivity does force synchronous/sequential
affect performance ? programming (as opposed to concurrent lasynch) for parts of your program,

· But
,

this is a necessary qualification

What type of operation is
-> Like mentioned before

, "Synchronized" is Java'sactic
sugar

the "synchronized" Keyword ? for enforcing mutual exclusion of methods marked by the word.

· Behind the scenes of this term
,

the JVM is doing some more intricate task

to achieve synchronization.

What are someempractices
->

every
field in a class that reads or writes field values should (usually

involving synchronization ? be synchronized.

-> Try to keep synchronized methods as short as possible

· this is because they restrict threads to working one at a time
,
rather than

concurrently (so performance speed gets reduced)

-> By using something called a Lock
Oracle's documentation

synchronization ?

So how does Java achieve ↑
class (like Counter

,
For ex)

According to

What is aLock ? -> A tool for controlling access to a shared resource by multiple threads.

->
commonly ,

a lock provides exclusive access to a shared resource ; only

one thread at a time can acquire the lock
,

and all access to the

shared resource requires that the lock be acquired first
.

-> Every lock has the ability to either be "locked" or "unlocked"
,

and to be

set to be one or the other of these two states.

How does Java use the locks ? - basically ,
when a method is marked as synchronized ,

the JVM internally
creates a single Reentrant Lock for

every instance of the synchronized

-> The one lock is shared across all synchronized methods of the class
.

-> The synchronized Keyword basically says ,
to

any thread that tries

to enter its method :

· "before this method is allowed to run
, you have to obtain/acquire

the lock corresponding to this object instance. If
you can't acquire

it, you have to wait
.

"

· "If
you are able to acquire the lock

, you can proceed into the method and

then release/unlock the lock as you are exiting the method
.
"

-> whichever thread gets to the method first "gets the lock" and is allowed

to proceed into the method. The other methods then must wait for the lock

to be available.

implementation of synchronized

I
u ->

every counter instance has its own

What does the "behind the scenes"

Lock

actually look like ?

· · "ReentrantLock" is the specific Lock

implementation used for the

synchronized Keyword operation.

Steps for threads modifying the object :

·
1.

Acquire the lock
, waiting until its

·
available if necessary.

Clock .
lock2) will only run if the lock

is available)

· 2 .

Critical section (executing all method-

related code)

finishes

- We don't have to worry too much about the details for implementing aLock

cause a deadlock ?

↑
an exception) .

&

*

· 3

Release lock after critical section

object ,
our processor & JVM does most of this work.

· Just an example to illustrate the logic behind synchronized .

What is a "deadlock" ?"When a thread for some reason
,
never releases a lock

,
and then other threads are

never able to acquire it laczess the methods.

What situation might
-

> If a thread dies in the middle of execution of the method (because it threw

· SOLUTION : put the method code inside a try-block ,

& put the

· unlock2) statement inside a subsequent finally block !

·

Now
,

if the method throws an exception ,
it will still come back & execute

the code in the Finally - block (RICALL : catching an exception).

public void addOne()E

lock . lock() ;

try E

value = getValues) + 1 ; 3

finally E

lock. Unlock() ;

33

Is this the only situation where -> No
.
In fact

,
thread errors usually aren't the cause of deadlocks ; its usually a lot more

a deadlock could arise ? complicated than this.

cause of deadlocks in

I
method on one object that then calls a method (of another object

What is the Usual/more likely
-> Usually

,
we have a much more complex program

where we have some synchronized

concurrent
programs

? that is also synchronized

called methodol)
,

and this particular method happens to call

object B's synchronized method
,

method 1()

· thread I has obtained the lock on obj A

↑
-> For example, imagine thread 1 running inside a synchronized method of object

A,

· thread I is waiting on the lock on obje (so it can perform that method call)

-> At the same time
,

thread 2 is currently inside of method() (in object B) , and

methodIC) calls As methodoc) inside its code.

· thread2 has obtained the lock on obj
· thread 2 is waiting on the lock on objA (to perform the method call

-> Now
,

the threads are stuck ... neither of them can continue because they are

waiting on the other to release its lock... they are deadlocked.

Why is this deadlock scenario
-> Especially in larger ,

more complex concurrent
programs ,

it's hard to rationalize all of

more likely to occur ? the paths existing in the program ,
and there are usually a lot of synchronized methods.

· Because of this
,

deadlocks are one of the hardest parts of debugging
concurrent programs - you often don't know why /where the deadlock has occurred.

What are the wait)) and -> methods defined by the Java Object class that are mechanisms for coordination

notify() methods ? between threads as they are running
-> For a thread to call wait)) or notify) ,

it must currently own the lock

associated with the object
· aka

, the wait/notify) call must be within a synchronized method's

code (61 that is when a thread owns a lock)

What does wait() do? -> Causes the curren+I thread to "wait"- parse execution - until another thread

calls either the notify () or notify All) method.

What does notify () do? -> Releases one waiting thread
,

as soon as the lock is available.

What does notify Alk) do ? - Releases all waiting threads - each one resumes in turn as the lock

becomes available.

Final Exam Review

Unit 1 :

Java
,

Maren
,
Git

-> 2 steps to running Java code :

2) compile the source code fromjava File to class file (a diff ,
like language) -

bytecode
human readable

java codeo
- JDK- class

binary
bytecode20 execute the resulting bytecode

bytecode
(class)

-> Java Virtual Machine - executed !

& JVM is the reiversal "machine" that Java uses to be able

to be a compiled lang that is also platform independent (Java's "big idea"

-> Interpreted languages : Further from computer's level ble need to be "interpreted" (parsed/translated)

First
... there fore slower

·

langs that have a built in code/program that interprets the code for execution javascript.
·

platform independent : can run same sourcecode on any
machine

-> Compiled Languages : non-universal compiler that turns source code into machine executable code

EX :
· faster K speaks directly to computer &ge ?·

platform dependent :

compiling is done for the specific architecture used by the machine

-> Dependencies : gra party libraries containing zodo that
you

use in your project , usually in jar file format

(a bunch of class files compiled into one)

orde - bytecode pacea

↑ program -> JVM

Dependencies
C

.jar File)
(executes)

-> import statement : allows you to add a diff package to your class file so you can reference its contents easily
-> SKIPPED : "Java Build Process"

,
"Git version Control system" (pages 5-9)

Unit 2 :

Object-Oriented Programming
-> basically the idea of collecting all the info behavior for how a certain set of data is interpreted

,
maintained,

& used into one "abstraction" - aka an object/a class - that can then be used to query properties,

invoke behaviors
,

& sure objects (specific set of data associated we one instance of the class) of that type.

· Think of integer coordinates & integer lengths as the data ... & "Triangle" as the abstractionobject
-> object : a collection of named fields that represent info about it ... each object is an instance of the class

->Parts of a class (an "abstraction") :

· FIELDS : the pieces of info that collectively define the class object

int width
,

int height
,

& Color color for the SolidColrImage class from 206

· CONSTRUCTOR : creates new instances of the class byFilling the fields with data values (usually
passed to constructor by the user

,
as parameters)

public SolidColor Image (inth
,
intw

,
color c)

this. height = h ;

this. width = w ;

this color = c ; 3

· INSTANCE METHODS : behaviors /actions that can be performed on a specific instance of the class ,
& return

an answer

-> "Static" = global ; can be called globally ; not specific to an instance but to the class as a whole

·

any methods or variables/fields declared as static are referenced ria the class name)!!).Not the name of any
· SolidColorImage . get AssignmentNumber (For ex)

specific instance·

· static is also the keyword used when creating methods in the main method Caka in a non-00 context)

-> "Final" Keyword : fields marked final can't be reassigned (value can't change) AFTER constructor has

given them their initial value

·

can still be instance-specific (doesn't have to be one
, unchangeable var for the whole

class - unless we also make it static) ...
but for each instance

,
it can't change after being set

->
class specific versus instance specific :

· class fields/methods : Fields & methods Not specificto
any particular instance

... one constant value that every
instance has in common,

& declared using static and final keywords !

private static final double EPSILON = 0 . 002;
·

instance fields/methods : methods & fields specific to each instance
... 1 static Keyword

-> KEY TERMINOLOGY : "class members" - ALL methods & fields defined in a class (both "instance"

and "class" ones)... but NOT the constructor

Unit 2 :

Encapsulation
->

Principle 1 : shield an object's internals from the rest of the program (aka otherjava Files) in order to

prevent instance fields from accidentally being changed ,
& to be able to refactor internal code

wo breaking external code.

ENFORCED BY :

marking all class fields as private
->

Principle 2 : Explicitly define "external" and "internal" behavior (which is like helper methods etc.)

in order to make objects easier to understand
,

maintain
,

use
,

and modify.
ENFORCED By : defining an interface !

-> Encapsulation Recipe :

2.
make all instance fields private

2-

Initialize instance fields with a public constructor

3.
Add getter & setter methods to expose raw <private) field values

↑

carefully choose methods to expose as public
5.

Make an Interface to clearly indicate which methods are exposed

(BECAUSE ! an impl object CAN have extra methods (like helper methods) that aren't defined in the

Interface
... however

,

other ppI can't access those methods when creating objects of the interface type Caka

"programming to the interface")
.

So we might as well make thoseextra methods private.

-> Access modifiers :

· private : only accessible inside the class they are created in

· protected : class & all of its subclasses can access it

· default :

anyone in the same package has access

·

public :
anyone anywhere can access

-> SKIPPED : derived getters ,
setter validation

,
and all notes on Interfaces

,
abstract methods in interfaces

,
etc.

Unit 3 :

Inheritance

-> declare subclasses using the keyword "extends" ... public class Avocado extends IngredientImpl
-> subclass constructors : Super (Essame parameter args taken by the parent class

public Avocado (String name
,
int amount

,
boolean isVegan)[

<
Avocado takes the parameter data given to it

super (name
,

amount
,

isVegan) ; by the user
,

then calls Super() & passes

3 the data into there. Super)) calls the

parent class constructor.

-> subclasses automatically inherit all class members (static & instance ; private & public/protected etc.)

-> multiple inheritance (having more than 1 parent class) is ONLY allowed/possible for interfaces - not classes

· this is basically a "workaround" to the single-inheritance rule for classes
,
be a class can implement an interface which

extends multiple interfaces(aka multiple object types
-> TYPELASTING :

2
upcasting

-

taking a reference to an obj that is a subclass
,

& forcing it to be of

its parent class type
· don't need to perform it using typecasting syntax ; its implied & compiler knows its true

·

checked & compile time.
I

remember
,
the "type" of the

Student S1 = new Student() ;
V object is whichever class

Person pl =1 ;
reference it is created as

Lake the left side of the2

downcasting -

opposite of upcasting
- forcing obj to be a subclass type. statement ;

-

↓·

needs to be performed using syntax : Image img = new ImageImpIC);

> Person pl = new Student() ; Ling is of type Image)
Student Stu = (Student) p2 ;

· checked at runtime ; prog throws exception if
you made an illegal downcast.

-> Is - a relationships :

·

all classes have is-a with the parent classes they extend (if they do

Avocado is - a IngredientImpl
· Parent class objects only have is-a w/ a subclass object if they have been declared as that subclass obj.

Person p2 is-a Student Person p3 = new Person() ;

X p3 is-a Student -> NO because we haven't specified what type of Person p3 is.

· all classes have is-a with the interfaces they implement.

IngredientImpl is-a Ingredient (the interfaces

· all subclasses automatically have is - a with the interface(s) implemented by their parent class.

Avocado is -

a Ingredient
-> Java's Object class is the "mother" parent class of All classes s ... only has I methods

, equals (object) &

toString()
&

got & wrong on exam I bla have to mention Object as a parent class !!

Unit 3 :

Inheritance

How to Answer subtype polymorphism questions on the exam !

-> make a graph charting all the implementations and extensions

IG -> An object can only be instantiated as a certain type if the "type" has an is - a

↑ relationship with the "reference" (garranteed)
12

A obj
= new (C) ; is NOT valid because "C is-a A" is not

necessarily true
... ig you

can't make a subclass

obj of parent class type?T · for questions asking about instantiation statements (like above)
,& A check to see if

you
can get from the type (right side of equal

- = sign) to the reference (left side) by following a forward

chain of arrows .

· Student stu = new Person() ; not allowed ?

-> For problems about typecasting to a diff interface
,
don't think about the graph or is -

a statements

so much as the conceptual meaning of an interface :

12 obj = new F() ;

S 20 obj2 = (10) obj ;
↳ valid !

· F extends A
,
which extends D and implements [2

,
Dextends CC implements [1 (which extends 10)

so in summary : Fextends A
,
D,I

by 10..

F implements [2
,
11

,
10

·

Since "F implements IO" that
, by definition

,

means it provides impl for every single method defined/required

·

this statement
,

an"20" interface - type object doesn't care about any of the details of the object EXCEPT

that it contains all
necessary

methods... which obj does (since it is a type "F")
, despite being

a type "I2"

Unit & :

Reference vs Value Types
-> value type :

int short byte char
3 Java's 8 value types

double long float boolean

-> items of these 8 types are stored directly in memory as their specified "value" (which is a string of 0

and Is)
, in their specified location.

-> bk they are smaller pieces of data
, they can be assigned their own "value" number - thingy ... obviously we

can't store all objects this
way bic it would take up way too much space (for ex

,
an int is stored as a

string of Os & Is that is small enough to only take up N bytes of memory
->

Everything else that isn't one of these 8 is an object ,
and thus stored as a reference type.

-> reference type :

-> the value of the variable/object Jaka the declared name of an obj instance) is not a string of numbers,

but a memory address that is stored directly in memory.
-> the memory address is a reference to the object that points to the location in the heap where the actual

object's info is stored .

Polymorphism
-> The is-a stuff on previous page are all part of type polymorphism - when an interface and/or parent class has multiple

implementations/subclasses.

-> One type of polymorphism is when multiple methods in a class have the same nameJaka several diff

versions of thesame method

· 2 versions : Overriding and Overloading
-> MethodOverriding :

· When a subclass opts to replace/rewrite the implementation of a method inherited from its parent class.

· If
you

don't add
my code to

your
subclass besides a constructor that calls super (parameter arge) ,

it will still

function completely:
public class Persons public class Professor extends Person Main :

private string name ; public Professor (String name) E Professor pl = new Professor ("serrato") ;

public Person (String name) [Super (name) ; 3 Sys- out. printin (p1 . getName()) ;

thisname = name ; 3 3 Output- > Serra to

public String getName()E

return this name ; 3

3

Unit & :

Polymorphism
-> MethodOverriding : When a subclass opts to replace/rewrite the implementation of a method inherited from its

parent class
.

· If you want to make a subclass-specific impl of one of the inherited methods :

->
use Coverride compiler directive to tell compiler whatur doing

->
overriden methods can't access parent's private fields

,
so if you need that info

,
access it by calling

the parent class' methods instead (if the Field data is accessible that way) , using super() :

public class Professor extends Person
Main :

public Professor (String name) E

Professor pl = new Professor ("serrato") ;
Super (name) ; 3 Polymorphismi

coverride ↑samemethoda Sys- out. printin (p1 . getName()) ;

public String CeName() E
Output- > Dr. Serrato

String ans = "Dr
.

"

+ Super - getName() ;

3

-> Method Overloading :

· providing multiple versions of the same method
,but which differ/are distinguished by the parameters that

they take in .

- must have diff parameters so that the call to each version of the method is distinct -

so that compiler

knows which exact method is being called

rectangle get Area (5) ; v. S. rectangle getArea (5
,
3) ; <

* REQUIREMENTS :

->
must have either a diff number of parameters

,
or diff data type of the parameter args

->
must have same access modifier (public private protected default

->
must have same status as either static or not static

· NOTE : return type of the methods has nothing to do with overloading
.

The return types can bethe same
,
or different.

-> Think about it - the whole issue of overloading is being careful not to confuse the compiler when calling an

overloaded method. And when you call a method
, you don't assume or know anything ab the return type.

public class Rectangle&
--

public int get Area (intwidth)

return (width
*

width) ; 3

public int get Area (int width
,
int height)

return (width height); 3 3

Unit & :

Polymorphism
-> Constructor Overloading :

·

providing multiple constructors for an object that also have to have different type or amt of parameters.
·

use constructor chaining with the this) Keyword
public class Student extends Person E

private string class ;

public Student (String name
,String class)

Super (name) ;

this. class = class ; 3

public Student (String name) E calls the

- by constructor
this name

," Freshman") ; Labore)

3

3

-> final keyword for methods & classes :

· methods marked final cannot be overridden by any subclass

· classes marked final cannot have any subclasses at all !

-> Method Access in Polymorphism :

· When creating an object , you only have access to the methods defined for the reference of the object,

not the object type
·

Similarly ,
when "programming to the interface" (creating objects of an InterfaceImpl type but with the Interface

as the reference
... you cannot access any extra methods created in the impl which aren't defined in the interface.

QUALIFICATION : Method Overriding
· if a subclass oversides one of its parents methods

, thenany object of the subclass type (whether or not

the reference is to the subclass object or its parent object ,
interface etc

.

) will utilize the overridden implementation
when the method is called .

A processor = new BC) ;
·

object Boverrides As "process" method and in this problem ,
we

int result = processor process (5
,
6); would use B's implementation

, despite the reference type of

the object being A

Unit 5 :

Composition and Aggregation
->

program designs regarding how objects relate to the objects that they encapsulate.

-> Aggregation :

· the encapsulated/internal objects are basically more independent ... they have their own lives, utilities
,

and

meaningful purpose outside ofthe aggregated object & are referenced elsewhere

· the internal objects can exist independently outside of the agg (in a meaningful way ; like it makes sense tohave them)

· the encapsulated objects are provided externally , usually through the param-args of the
agg

class' constructor

->

basically the fact that the constructor's parameters aren't just primitive fields
,
but also actual class objects ;

public Course (Room room
,

Professor professor
, string name

,
int credits)

... // (assigning the arguments to private Room
,

Professor
, string ,

& int object fields 3

-> Composition :

· the encapsulated objects don't rily make sense outside of the composed class (not usually shared by other abstractions)

·

the encapsulated objects are created internally ,
rather than passed in by user

-> often
, the constructor doesn't take any parameters

- often
,

no setters or getters for these internal objects ; they aren't meant to be qued
· the encap objects states & functions are thus

only accessible to the composed abstraction

* EXCEPTION : Dependency Injection

public class Vehicle ImplE

private Engine engine ;

private Wheel Frontleft ; 1.
public Vehicle Impl() &

engine = new EngineImpl)); &
Frontleft = new Wheel Impl() ;

-> coupling : When classes reference each other by name
, creating a dependency between them

·

the more named references there are between class Files
,

the more highly coupled the code is.

·

coupling is okay between classes in the same package ; otherwise its a bad thing
.

-> Dependency Injection :

· A
way to support low/ loosely coupled code in composition classes by"injecting" specific (already created) instances

of class objects into the composition
,
rather than having it create them itself.

·

dependency injection makes composition programs look more like aggregations bk it kind of goes against their nature...

aggregations already inherently support D
.3 . just by their design/definition.

· How to execute it : Inject the other class objects through setter methods (setter injection) or through constructor parameters

(constructor injection)

Unit 5 :

-> When creating an abstraction for a class that wants to implement multiple interfaces
, you can do this through

inheritance () class ABCImpl extends ABImpl (which extends AImpl & implements B) implements<)

OR through composition -

class ABCImpl implements A
,

B
,

< but encapsulates private A
,

B
,

and C objects that

it delegates to when it comes to defining the methods mandated by the 3 interfaces.

· If the abstraction lends itself to natural heirarchy
. Otherwise

,
and if when given the choice

,
favor

Composition !
AbstractClasses

-> abstract methods : methods in a parent class marked with the keyword abstract and for which there is no

coded implementation defining what it does

·Similar to how methods look in an interface - just the method signature ;

public abstract String get Status() ;

-> since it has no definition
, every subclass of the class w/ the abstract method Must "verside" that method & define it itself.

-> abstract classes : marked by the abstract Keyword ,
classes where you cannot make an object of that direct type

· the class needs to have subclasses
, can't be instantiated without specifying a subclass object type.

· A variable can have the abstract class as its reference
,
but never as its object type

public abstract class Person public class Student extends Person ↓ Main :

--

--- Student avi = new Students) ;
- allowed

public abstract string getStatus(); @ Override Person ari = new Student() ; - allowed

3
public String getStatus () E Person avi = new Person);

- Not allowed

1 some impl code here

3

-> if at least one method in a class is abstract the whole class must also be marked an abstract class.

-> you can choose to make& mark parent classes abstract even if none of the methods are

Unit 6 :

Error Handling
-> exceptions : Unexpected

,
unusual

,
or abnormal situations that arise during execution of a

program.
-> Early error-handling strategies

& ·
Global error codes :a global variable where we store an int representing

⑳
Special return values :

we designate a special value that a method

an "error code" whenever something goes wrong. should return if it initially attempts to return some out-of-range
· declare a public static inte top of a class value that it shouldn't have produced.
· Anytime code does Suthe where an error would occur

,
we have to check · void functions : should instead be it methods that return a number

the variable to see if it is still 8 or has changed indicating the error status (like w/ global error codes)

-> DRAWBACKS TO EARLY METHODS :
· other functions : same thing- or could have the frection return null

& Reliant on documentation (made by the pergrammer) explaining what Programmer's responsibility to remember to check for errors at every potential spot

each error zode/return val means - this docutation needs to be well lotherwise program could continue on unaffected& cause bigger problems later)

understood by others using the program & (global error codes) have to clear out global var's value after each time

& (global error codes) if 2nd error occurs while It is being handled
,
there is an error is handled

nowhere to store the code = Modern Strategy : Exceptions

Unit 7 :

Exceptions
->

exception handling : Formal method for detecting & responding
to errors ; all languages provide a built-in mechanism for this.

· BENEFITS of exception handling (versus older strategies) :

- consistent & extensive -

expressive (can encapsulate details about the error)

- safer : can assure that any code thateeds to be executed will be (even if an error occurs

-> Exception handling in Java : Exception objects -> Throwing an Exception

· objects for each specific type of exceptive
,
that encapsulate details · the "detection" aspect - signaling that suthe has gone wrong.

ab the error that occurred - Java provides many built in exception classes · Sequence of events :

Po
· classified with inheritance : exception object is created at the time that it is being thrown

(extends throw new RuntimeException ("no blan blah .
") ;Throwable parent class easier

n & & exception class type error message

Error. java ->
Exception.java 2.

Right after this line
, the method/program stops executing & We start

....

2Exception ClassNotFoundException CloneWotSipException RuntimeException "Unwinding the stack" to look for a try-block.

- ArithmeticException# # # ↑ 3.

Program unwinds & When it finds a method assoc . WI try-block,
it

-
- W goes to execute the subsequent catch-block which then handles the error.

-> "Error" represents externally caused , unrecoverable problems that generally shouldn't be caught/handled
& if program Fully unwinds who

- Catching an Exception
like

,
in the Main method...)

error being handled
, the program dies .

I
not some separate file

-> the "handling" aspect - providing the code to handle a thrown exception.↑
-> try-blocks : the block of code where we write the code /all the method that has possibility of an exception

-> catch-blocks : the block of code which contains the actual code handling the exception (how the prog responds to a given throw

· usually multiple catch blocks
, each one corresponding to a different type (class) of exception.

*

program jumps through the catch-blocks
,looking for the (first) one that defines the same Exception class type (or a parent class uf) the thrown exception.

5.
executes the code inside the zatch-block CONLY the Is "match" - doesn't look any frother

3.If no matching catch-block is found
, program returns to "unwinding the stack"& repeating the process by the next method on the call frame.

-> Best Practices with Exceptions -

2)
Throw exceptions EARLY - as soon as you detect awrong value

· Defensive programming
2)

Be specific when throwing exceptions
,
& try to use abuiltin type when possible

3)
Catch exceptions LATE-let it bubble up" to the level of the program

where it will actually make sense

·

Only catch it if you have some (programmatic) way to deal with the error

-> finally block : placed at the end of the sequence of catch-blocks and contains code that needs to executed no matter what

·Whether or not an exception was thrown

· whether or not it was handled by a catch-block

Unit 7 :

Exceptions
-> checked us unchecked exceptions :

Unchecked Exceptions
&CheckedExceptions Tonprespage)Con prev page)

-> RuntimeException & all of its descendants ; the Error class ; -> All other Exception subclasses (as well as Exception itself)

and the Throwable class -> Respondingto errors caused by Factors outside the program's control .

->Fors caused internally within the
program (e: logia errors · Our prog is responsible for always responding to these

that really "never should have happened" -

eg programmer's fault -Subject to the "catch or Specify" rule .

-> should only throw exceptions if we know how to handle the - Exception must be caught (or specified) inside the method itself

Situation. May or may not need to address them in our code (not just the file where it is being called .

-> not subject to the "catch or specify
"

rule -> "Catch or specify
"

rule : if a method contains code that might throw

-> exception is thrown inside the method
,
butaught in the a checked exception ,

then the method must also EITHER :

A
File where the method is being called. catch the exception internally (with try- & catch-blocks)

(methodB() [if (x == 2) Ethrow new RuntimeException)(;33) · do this iff the current method is the correct place to handle the error

(main & try EmethodB() ; 3 catch (RuntimeExceptione)E ...33) (and we know how to deal with it
OR

B

specify in the method signature that the checked exception might
ECatch or specify errors" be thrown by the method :

· by specifying an exception in a method
,
we're basically "putting off" handling it public int method(() throws File Not FoundException

·

we still have to catch it somewhere
. 2 options :

... 3 (bespracti

1 catch the exception in the Main method by calling it inside a try-block do this if the error needs to be dealt what a higher level

8. force the exception to continue "bubbling up" by having the Main method basically instructs" the error to bubble up

ALSO specify the exception (in its method signature) ;

public static void main (String[] args) throws FileNotFoundException E method(1) ; 3

PNEVNOMILDEVICE: Unchecked = Rentime (& Throwable& Error ...

unnecessary to "catch or specify
"

checked = everything else ... must "catch or specify"

Unit 8 :

JUnit

Y

Unit 9 :

Iterator

-> behavioral design pattern

-> provides a way to sequentially access & loop through the elements of any given collection (like an ArrayList ,

Binary Tree
,
HashMap, etc.) without exposing the underlying implementation of the graph ,

~ the iterator object doesn't know anything about the elements of the collection or what they mean

-> we create a new Iterator class/object for
every particular kind of collection (like HashMap,

LinkedList
,

etc.),
and for

every specific way that we want to loop through the collection (i
. e . alphabetical , depth-first

,
breadth-first,

etc.

->

key points about iterators :

·

multiple iterators can traverse through a collection at the same time.

· the iterator pattern assumes that the collection will not be modified while the iterator is being actively used.

-> What an iterator object does :

· extracts the traversal behavior of a collection into a separate object (called an iterator/

·

encapsulates all of the traversal details ;
-

current position
- elements

remaining till end

-> the Iterator <TC interface : the interface for object classes that are "iterators" - objects that
,

for a given
collection

, encapsulate the details of how to loop through it
.

· to be an iterator
,

must implement this method

· We create a specific iterator obj to define how to loop through a specifice of collection - therefore
,
we specify

a datatype T in a given Iterator < T > implementation .

EX :

Iterator <String) iter = new Alphabetizer (data) ; - Alphabetizer is an object class which implements

the interface specifically for string objects .

· boolean has Next() : methods
&Figures out if there are still items left to visit

,
& returns false if not required

· T next1) : by
IteratorT]

& returns the next item in the collection (this is where
you

definethe sorting logic you want to use

interface
& throws No such ElementException if no items remaining in collection

- the first thing that the nexts) impl should do is call hasNext)
,
and throw the exception if

it returns false. ↑

-> How to implement an Iterator <T > Classi

·

Requirements :

-> track progress through the collection

-> know which items have been seen
,

& Which are coming up next
.

->

manage the order of the items WITHOUT modifying the underlying collection & its order

Unit 9 :

Iterator

Iterable < T >

· interface representing a class (usually one representing a collection) that is

capable of creating and returning an
Iterator object for its elements

·

only defines I required method : Iterator <T > iterator()(

·

any class can implement Iterable <> so long as they provide that method.

· All of Java's collection classes implement Iterable s (Map
,
List

,
Set

,
etc .)

Unit 10 :

Decorator
-> allows us to extend or modify the implementation of an interface W/O subclassing /inheritance

->

Unit 13 :

Graphical User Interfaces
-> the original asychronous programming model

-> made up of VI components (widgets
-> AWT :

og
GUl library for Java

· limited to just the VI components that were in common between all operating systems.
·

platform dependent
-> JavaFX :

· modern
,
well-known

, widely used 3M party one framework that is platform independent
· inspired by web-application development

· created with responsive design in mind.

- Responsive Design
: enforcing a separation of content fromye

Model-View-controller

-> a software design pattern used for structuring programs for user-interface applications .

->
in effect

,
it employs the Observer DP

-> View/separate an application into 3 parts :

2. the state of the application aka how the appworks - (the Model)

I
· the info that our app uses & manipulates

↑

·

the logic/algorithmic stuff for data manipulation
· the current status of the app's operations

(the View

- 2 . the way the application ous & is presented to the user
,
& how the user interacts with it

(The Controllers

↑
3. A means to translate the user interactions (#2) into manipulations of the rederlying application state (* 1)

->

Big ideas of MVC :

·

separate an applications VI code from its state management code

· have each of the 3 components have their own well-defined interfaces & responsibilities.
· decouple the View from the Model-useful be then we can make diff views for diff devices or etc. Compatability

and just substitute them into the program.

· Model & View don't even know that each other exist(ideally) ;both are Fully independent & could be run on their own

-> The Model :

· stores the application state (all the stuff in #1)

· knows how the application works
,
but Not how to show it to the user

·

is a subject object observed by either the View (classic MrC) or the controller Calternate MrC

- observed for state changes (blc that means aspects of the app have changed

-> the Model :

· hasI main responsibilities :

2.
encapsulate the application state (in private fields)

private boolean [32] lamps private Puzzle puzzle

2
expose methods for accessing the state like getter methods

isSolved)) isLamp)) isLampIllegal) getPuzzle getPuzzheLibrary Index isClreSatisfied

·

the observer (whether its View or controller) will use these methods to update the UI

3

expose methods for modifying the states (setter methods

addLamp() removeLamp() setActivePrizleIndex() resetPuzzle))

· View/Controller will use these to reflect changes made by user interactions

&

notify its observers when any state has changed Cake after one of the above methods is called

-> the View :

· knows how the application looks ,
but not how it works.. everything in #2

· creates & displays the user interface using the current state data encapsulated in the Model

· has 3 main responsibilities :

1 create + display GUI

2. refresh / regenerate the UI whenever any application state changes occur

· does this by being an observer object ,
either observing the Model itself (classic MVC) or

observing theController (which observes then the Model)

·

When notified of a change,
it is coded to then update the specific VI component that has to do w/

that change ...
a tile on the GridPane

,
the Label displaying the active puzzle index

,
ets.

3.
To observe for user interactions & report them to the Controller

· does this by encapsulating a reference to the Controller (in the constructor

-> The Controller :

· handles user interactionss ... the "brains" of the operation
·

translates user interaction events into commands for the Model

·

must encapsulate reference to the Model.

Unit 18 :

Concurrent Programming
-> sequential computing model : normal computation where series of computations are executed one at a time.

·

goes along with the synchronous programming model - where a task may be started (like calling a method)
,

and

the main program mustuse execution & Wait for the task to complete
,
before continuing on.

-> concurrent computing model : series of computations executed over overlapping time periods .
I ways to do thisunclear

What the difference is) :

-

asynchronous programming model : model where atask can be started
,
but the main program continues on

executing while waiting for it to complete ,
& later coordinates with the task

-
"parallel programming" : multiple tasks can simultaneously be executed on separate processing elements (ies) .

& executed in Java using threads

-> threads :
an abstraction for executing a program ,

created so that the prog. can operate in more than I place at a time.

· A thread encapsulates 3 things :

1. Instruction Pointer - Where we are in the program

2. Call Stack -> which methods are currently executing
3. Memory- shared between all threads (unlike the above things (

· threads communicate with each other via coordination of their shared memory.

Implementing Threads in Java

main

Runnable task] =

~

lambda expression defining
() - E Runnable's void runk) method

for (inti = 0ji < 10 ; i + +)E

SouT(i + 1) ;
&

33 ;

Thread thread1 = new Thread (task1) ;

thread1
.
Start() ;

3

-> Runnable : defines objects that represent a task that can be performed ... "Mini programs
"

· run () contains all the code we want executed for that task

-> Thread object : represents a thread of execution ; takes a Runnable object as a parameter (providing the

instructions on what the thread should do

·

call .
Start() method to start the thread- & thus begin concurrent execution

.

->join() method : called on a thread object ,
and signals to the main method (where the thread was started) to

pause its own execution UNTIL the thread is done executing all of its code.

thread1 . join C) ;

Unit 18 :

Thread Coordination in Java

-> race condition : segment of concurrent code where the timing of the execution affects the result.

· occurs when 2 or more threads are actively sharing memory
:

-

manipulating or using the same object
-

retrieving state info from the same object
· we don't want 2 threads to be manipulating the same object at the same time

, because we can't predict

which threads' modifications will end up as the final results
,

· SOLUTION : synchronized methods

-> synchronized Keyword : inside an object class
,

mark methods that engage in "reading from" or "writing to "

the object as synchronized
-

public Synchronized void addOnel) [... 3

· methods marked as synchronized will not allow multiple threads to enter /execute them at the same time

FOR A PARTICULAR OBJECT - the locks/exclusivity is instance -specific ,
not class - specific.

-lodingrules & tips

· don't use real numbers unless you have to-always opt for int

& static functions are global for the class they're in ; they don't need to be

at the +op .

·

"method" and "function" are synonymous
·

NEVER compare two real numbers (double) values using double equal operator (= =
-> instead

,
take the absolute value of the difference between those 2 values

,
& compare to make sure that

it is "less than "some small threshold value (which you define/decide ..

if it is
, they can be considered equal.

d

called the "epsilon bound"

->equals) versus ==

· equals) checks content equality ... are both of these objects identical ?

· == checks reference equality ...

are these objects the subj in memory ?

· EX :

String s = "hello" ;

String y : "hello" ;

String z = new String ("hello") ;
S = = y ;

-> TRUE--S and y refer to the same memory address in the"string constant pool"

S = = z ; -> FALSE--Z is a new string object

y = = z ; -> FALSE

S
. equals (y) ; -> TRUE

Sequals (a) ; etus 35 , 8
,
and I all have the same content/tre"

Y . equals (2) ; - TRUE

·

pneumonic device : == is "Lequal signs" which is INTENSE and OD
... not just one

,
but2 ... thus it must want the

truest form of equality ,

aka that the 2 things being compared are actually the same object

equals() takes a value as its parameter , just wants to see if the object's content matches the value passed

in

-> "doteguals"... 'd' is right after's '

... thinkB content Equality,ot equal

-> stuff I skipped or should
go

back over

my notes for

Part 1 (beginning - Midterm 2)

-> Java Build Process

-> derived getters , setter validation (unit 2)

->
notes on Interfaces & abstract methods in Interfaces (unit 2)

->

meaning of final in various contexts

-> Java instance methods - always virtual

->

